首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   789篇
  免费   19篇
  国内免费   5篇
化学   598篇
晶体学   24篇
力学   19篇
数学   59篇
物理学   113篇
  2023年   6篇
  2021年   7篇
  2020年   9篇
  2019年   13篇
  2018年   8篇
  2017年   11篇
  2016年   17篇
  2015年   19篇
  2014年   12篇
  2013年   34篇
  2012年   27篇
  2011年   69篇
  2010年   27篇
  2009年   26篇
  2008年   63篇
  2007年   50篇
  2006年   46篇
  2005年   59篇
  2004年   38篇
  2003年   39篇
  2002年   45篇
  2001年   18篇
  2000年   10篇
  1999年   12篇
  1998年   7篇
  1997年   7篇
  1996年   7篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   9篇
  1990年   4篇
  1989年   9篇
  1988年   2篇
  1987年   4篇
  1986年   10篇
  1985年   8篇
  1983年   5篇
  1982年   6篇
  1981年   6篇
  1980年   6篇
  1979年   5篇
  1978年   7篇
  1977年   5篇
  1976年   6篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1966年   2篇
排序方式: 共有813条查询结果,搜索用时 15 毫秒
101.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   
102.
103.
Glass formation in Li2O-Nb2O5-GeO2 (LNG) system, the structure and crystallization behavior of glasses that have compositions near the ratio Li2O/Nb2O5 ∼ 1 corresponding to stoichiometry of ferroelectric phase LiNbO3 were examined by differential thermal analysis, X-ray diffraction, small-angle neutron scattering and second harmonic generation (SHG). LNG glasses were subjected to heat treatments at temperatures in the range between Tg and temperature of the first exothermic peak in order to initiate nonlinear optical activity by nanoheterogeneity formation. Transparent nanostructured glasses with second-order optical nonlinearity were obtained for compositions characterized by the Li2O/Nb2O5 molar ratio ranging from 0.83 to 1.2 and GeO2 40-45 mol%. As prolonged heat treatments of nanostructured glasses result in crystallization of ferroelectric LiNbO3 the origin of SHG in transparent LNG glasses is supposed to be connected predominantly with polarity of nanoheterogeneities formed at the initial stage of phase separation.  相似文献   
104.
Amorphous nanoheterogeneities of the size less than 100 Å have been formed in glasses of the Li2O–Nb2O5–SiO2 (LNS) and Li2O–ZnO–Nb2O5–SiO2 (LZNS) systems at the initial stage of phase separation and examined by transmission electron microscopy, small-angle X-ray and neutron scattering. Both LNS and LZNS nanoheterogeneous glasses exhibit second harmonic generation (SHG) even when they are characterized by fully amorphous X-ray diffraction (XRD) patterns. Chemical differentiation and ordering of glass structure during heat treatments at appropriate temperatures higher Tg lead to drastic increase of SHG efficiency of LNS glasses contrary to LZNS ones in the frame of amorphous state of samples. Following heat treatments of nanostructured glasses result in crystallization of ferroelectric LiNbO3 and non-polar LiZnNbO4 in the LNS and LZNS glasses, respectively. Taking into account similar polarizability of atoms in LNS and LZNS glasses, the origin of the principal difference in the second-order optical non-linearity of amorphous LNS and LZNS samples is proposed to connect predominantly with the internal structure of formed nanoheterogeneities and with their polarity. Most probably, amorphous nanoheterogeneities in glasses may be characterized with crystal-like structure of polar (LiNbO3) phase initiating remarkable SHG efficiency or non-polar (LiZnNbO4) phase, which do not initiate SHG activity. It gives an opportunity to vary SHG efficiency of glasses in a wide rage without remarkable change of their transparency by chemical differentiation process at the initial stage of phase separation when growth of nanoheterogeneities is ‘frozen’. At higher temperatures, LiNbO3 crystals identified by XRD precipitate in LNS glasses initiating even more increase of SHG efficiency but visually observable transparency is impaired.  相似文献   
105.
ABSTRACT

A new high pressure cell for neutron diffraction experiments using nano-polycrystalline anvils is presented. The cell design, off-line pressure generation tests and a gas-loading procedure for this cell are described. The performance is illustrated by powder neutron diffraction patterns of ice VII to ~82?GPa. We also demonstrate the feasibility of single crystal neutron diffraction experiments of Fe3O4 at ambient conditions using this cell and discuss the current limitation and future developments.  相似文献   
106.
107.
We herein report the preparation of thermo- and redox-responsive branched polymers by the condensation reaction of three-armed oligo(ethylene glycol) (trisOEG) and cystamine (CA). The prepared branched polymers exhibited a soluble–insoluble transition at a lower critical solution temperature (LCST) and formed coacervate droplets through a liquid–liquid phase separation process. We then demonstrated control of the LCSTs of the branched polymers by varying the feed ratio of CA and the surrounding salt concentration close to body temperature. In addition, the trisOEG-cys x polymer formed coacervate droplets above the LCST, in which hydrophobic molecules were condensed. The redox response of the branched polymers was also investigated. Interestingly, the branched polymers degraded to low-molecular-weight materials (i.e., trisOEG) in the presence of dithiothereitol as a reducing agent through cleavage of the disulfide bond of CA. This facile preparation of branched polymers is expected to be valuable in the context of functional biomedical materials and modifiers for materials surfaces, such as the bases for drug delivery carriers and separation materials. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2623–2629  相似文献   
108.
A novel mediator-polymer-modified anode for microbial fuel cells   总被引:1,自引:0,他引:1  
A high-performance anode system based on a combination of mediator-polymer-modified graphite felt and bacteria capable of reducing extracellular materials shows significant potential for practical use in microbial fuel cells (MFCs).  相似文献   
109.
β-Selective galactosylation was studied using a series of 2-O-benzylated phenyl 1-thio-galactosides and glycosyl acceptors in propionitrile with BSP-TTBP-Tf2O. The glycosylation enabled us to synthesize useful precursors of N-acetyllactosamine and core 1 O-glycoserine derivatives in a highly convergent manner.  相似文献   
110.
Transparent crystallized glasses consisting of nonlinear optical Ba(2)TiSi(2)O(8) nanocrystals are prepared in Eu(2)O(3)-, Nd(2)O(3)-, and Er(2)O(3)-doped 40BaO-20TiO(2)-40SiO(2) glasses by a conventional heat treatment method in order to clarify the optical properties of rare-earth (RE) ions in nanocrystals. The electronic polarizabilities of crystallized glasses are evaluated from the values of density and refractive index, and are found to decrease due to nanocrystallization, which indicates that the chemical bonding state in the crystallized glasses is more covalent compared to the precursor glasses. It is proposed from x-ray diffraction analyses and photoluminescence spectra of Eu(3+) ions that RE ions such as Nd(3+) and Eu(3+) are incorporated into Ba(2)TiSi(2)O(8) nanocrystals. The Judd-Ofelt parameters, Omega(t) (t=2, 4, and 6), of Nd(3+) and Er(3+) ions are evaluated from optical absorption spectra. It is observed that the Omega(2) parameter of Nd(3+) and Er(3+) increases largely due to nanocrystallization, suggesting that the site symmetry of Nd(3+) and Er(3+) ions in nanocrystallized glasses is largely distorted due to their incorporations into the Ba(2+) sites in Ba(2)TiSi(2)O(8) nanocrystals. The change in the Omega(4) and Omega(6) parameters due to nanocrystallization is small. It is proposed that nonlinear optical Ba(2)TiSi(2)O(8) nanocrystals including RE ions would have a high potential as active optical materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号