首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3672篇
  免费   188篇
  国内免费   11篇
化学   2847篇
晶体学   48篇
力学   32篇
数学   111篇
物理学   833篇
  2023年   29篇
  2022年   43篇
  2021年   50篇
  2020年   84篇
  2019年   92篇
  2018年   61篇
  2017年   37篇
  2016年   133篇
  2015年   112篇
  2014年   128篇
  2013年   176篇
  2012年   246篇
  2011年   277篇
  2010年   119篇
  2009年   108篇
  2008年   233篇
  2007年   186篇
  2006年   199篇
  2005年   187篇
  2004年   192篇
  2003年   132篇
  2002年   100篇
  2001年   63篇
  2000年   43篇
  1999年   49篇
  1998年   25篇
  1997年   23篇
  1996年   37篇
  1995年   42篇
  1994年   31篇
  1993年   26篇
  1992年   55篇
  1991年   43篇
  1990年   29篇
  1989年   33篇
  1988年   22篇
  1987年   33篇
  1986年   38篇
  1985年   35篇
  1984年   24篇
  1983年   20篇
  1982年   28篇
  1981年   23篇
  1980年   32篇
  1979年   20篇
  1978年   19篇
  1977年   17篇
  1975年   22篇
  1974年   20篇
  1973年   26篇
排序方式: 共有3871条查询结果,搜索用时 15 毫秒
951.
Fuwa H  Sasaki M 《Organic letters》2008,10(12):2549-2552
An efficient strategy for the synthesis of endocyclic enol ethers based on a Suzuki-Miyaura coupling/ring-closing metathesis sequence has been developed. The strategy has successfully been applied to the synthesis of spiroacetals, including cytotoxic marine metabolites attenols A and B.  相似文献   
952.
Strigolactones (SLs) are carotenoid-derived plant hormones involved in the development of various plants. SLs also stimulate seed germination of the root parasitic plants, Striga spp. and Orobanche spp., which reduce crop yield. Therefore, regulating SL biosynthesis may lessen the damage of root parasitic plants. Biosynthetic inhibitors effectively control biological processes by targeted regulation of biologically active compounds. In addition, biosynthetic inhibitors regulate endogenous levels in developmental stage- and tissue-specific manners. To date, although some chemicals have been found as SL biosynthesis inhibitor, these are derived from only three lead chemicals. In this study, to find a novel lead chemical for SL biosynthesis inhibitor, 27 nitrogen-containing heterocyclic derivatives were screened for inhibition of SL biosynthesis. Triflumizole most effectively reduced the levels of rice SL, 4-deoxyorobanchol (4DO), in root exudates. In addition, triflumizole inhibited endogenous 4DO biosynthesis in rice roots by inhibiting the enzymatic activity of Os900, a rice enzyme that converts the SL intermediate carlactone to 4DO. A Striga germination assay revealed that triflumizole-treated rice displayed a reduced level of germination stimulation for Striga. These results identify triflumizole as a novel lead compound for inhibition of SL biosynthesis.  相似文献   
953.
Binary transition-metal oxides (BTMOs) with hierarchical micro–nano-structures have attracted great interest as potential anode materials for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical cauliflower-like CoFe2O4 (cl-CoFe2O4) via a facile room-temperature co-precipitation method followed by post-synthetic annealing. The obtained cauliflower structure is constructed by the assembly of microrods, which themselves are composed of small nanoparticles. Such hierarchical micro–nano-structure can promote fast ion transport and stable electrode–electrolyte interfaces. As a result, the cl-CoFe2O4 can deliver a high specific capacity (1019.9 mAh g−1 at 0.1 A g−1), excellent rate capability (626.0 mAh g−1 at 5 A g−1), and good cyclability (675.4 mAh g−1 at 4 A g−1 for over 400 cycles) as an anode material for LIBs. Even at low temperatures of 0 °C and −25 °C, the cl-CoFe2O4 anode can deliver high capacities of 907.5 and 664.5 mAh g−1 at 100 mA g−1, respectively, indicating its wide operating temperature. More importantly, the full-cell assembled with a commercial LiFePO4 cathode exhibits a high rate performance (214.2 mAh g−1 at 5000 mA g−1) and an impressive cycling performance (612.7 mAh g−1 over 140 cycles at 300 mA g−1) in the voltage range of 0.5–3.6 V. Kinetic analysis reveals that the electrochemical performance of cl-CoFe2O4 is dominated by pseudocapacitive behavior, leading to fast Li+ insertion/extraction and good cycling life.  相似文献   
954.
N,N’-Diarylated tetrabenzotetraaza[8]circulenes 3 a and 3 b were synthesized in good yields by a reaction sequence involving oxidation of tetrabenzodiazadithia[8]circulene 5-Oct and SNAr reaction with aniline derivatives. The obtained aza[8]circulenes 3 a and 3 b were easily oxidized to give their radical cations 3 a+ and 3 b+ , which are highly stable under ambient conditions. X-ray diffraction analysis of radical cation 3 a+ showed a face-to-face dimer arrangement with an interplanar separation of 3.320 Å. The spin density of 3 a+ was calculated to be delocalized over the whole circulene π-systems with spin–spin exchange integral (J=−144 cm−1) in the dimeric part. These radical cations displayed far red-shifted absorption bands reaching to 2000 nm. Thus this study has proved the hetero[8]circulene scaffold to be a new entry of promising electronics and spin materials.  相似文献   
955.
We review recent developments in the preparation of mesoporous metals and related metal‐based nanomaterials. Among the many types of mesoporous materials, mesoporous metals hold promise for a wide range of potential applications, such as in electronic devices, magnetic recording media, and metal catalysts, owing to their metallic frameworks. Mesoporous metals with highly ordered networks and narrow pore‐size distributions have traditionally been produced by using mesoporous silica as a hard template. This method involves the formation of an original template followed by deposition of metals within the mesopores and subsequent removal of the template. Another synthetic method is the direct‐template approach from lyotropic liquid crystals (LLCs) made of nonionic surfactants at high concentrations. Direct‐template synthesis creates a novel avenue for the production of mesoporous metals as well as related metal‐based nanomaterials. Many mesoporous metals have been prepared by the chemical or electrochemical reduction of metal salts dissolved in aqueous LLC domains. As a soft template, LLCs are more versatile and therefore more advantageous than hard templates. It is possible to produce various nanostructures (e.g., lamellar, 2D hexagonal (p6mm), and 3D cubic (Ia d)), nanoparticles, and nanotubes simply by controlling the composition of the reaction bath.  相似文献   
956.
The electrochemical activation of multiwalled carbon nanotubes (MWCNTs) (at potentials of 1.5–2.0 V vs Ag/AgCl for 60–360 s) results in significantly increased rate constants ( ) for heterogeneous electron‐transfer with [Fe(CN)6]3?/4? (from 8.34×10?5 cm s?1 for as‐received MWCNTs to 3.67×10?3 cm s?1 for MWCNTs that were electrochemically activated at 2.0 V for 180 s). The increase in the value of arises from the introduction of wall defects exposing edge planes of the MWCNTs, as observed by high‐resolution TEM. The density of the edge plane defects increases from almost zero (for as‐received MWCNTs) to 3.7 % (for MWCNTs electrochemically activated at 2.0 V for 180 s). High‐resolution X‐ray photoelectron spectroscopy (HR‐XPS), Raman spectroscopy, and electrochemical impedance spectroscopy were used to gain a better understanding of the phenomena. HR‐XPS revealed that the increase in electrochemical activation potential increases the number of oxygen‐containing groups on the surface of carbon nanotubes.  相似文献   
957.
Dendritic Pt nanospheres of 20 nm diameter are synthesized by using a highly concentrated surfactant assembly within the large‐sized cage‐type mesopores of mesoporous silica (LP‐FDU‐12). After diluting the surfactant solution with ethanol, the lower viscosity leads to an improved penetration inside the mesopores. After Pt deposition followed by template removal, the arrangement of the Pt nanospheres is a replication from that of the mesopores in the original LP‐FDU‐12 template. Although it is well known that ordered LLCs can form on flat substrates, the confined space inside the mesopores hinders surfactant self‐organization. Therefore, the Pt nanospheres possess a dendritic porous structure over the entire area. The distortion observed in some nanospheres is attributed to the close proximity existing between neighboring cage‐type mesopores. This new type of nanoporous metal with a hierarchical architecture holds potential to enhance substance diffusivity/accessibility for further improvement of catalytic activity.  相似文献   
958.
A computer program, COMPASS, is described for searches for common geometrical pattern among a set of chemical compounds. The approach is based on a distance geometry method. The program allows the user to specify some search conditions which are defined with weighting atoms of different types and distance allowance. Information of charges on each atom in molecules can also be included. Examples are presented to illustrate the abilities of the program in relation to structure/activity problems.  相似文献   
959.
Squarylium-based π-electronic cation with an augmented dipole was synthesized by methylation of zwitterionic squarylium. The cation formed various ion pairs in combination with anions, and the ion pairs exhibited distinct photophysical properties in the dispersed state, ascribed to the formation of J- and H-aggregates. The ion pairs provided solid-state assemblies based on cation stacking. It is noteworthy that complete segregation of cations and anions was observed in a pseudo-polymorph of the ion pair with pentacyanocyclopentadienide as a π-electronic anion. In the crystalline state, the ion pairs exhibited photophysical properties and electric conductivity derived from cation stacking. In particular, the charge-segregated ion-pairing assembly induces an electric conductive pathway along the stacking axis. The charge-segregated mode and fascinating properties were derived from the reduced electrostatic repulsion between adjacent π-electronic cations via dipole–dipole interactions.  相似文献   
960.
Unlike absorption-based colors of dyes and pigments, reflection-based colors of photonic crystals, so called “structural colors”, are responsive to external stimuli, but can remain unfaded for over ten million years, and therefore regarded as a next-generation coloring mechanism. However, it is a challenge to rationally design the spectra of structural colors, where one structure gives only one reflection peak defined by Bragg's law, unlike those of absorption-based colors. Here, we report a reconfigurable photonic crystal that exhibits single-peak and double-peak structural colors. This photonic crystal is composed of a colloidal nanosheet in water, which spontaneously adopts a layered structure with single periodicity (407 nm). After a temperature-gradient treatment, the photonic crystal segregates into two regions with shrunken (385 nm) and expanded (448 nm) periodicities, and thus exhibits double reflection peaks that are blue- and red-shifted from the original one, respectively. Notably, the transition between the single-peak and double-peak states is reversible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号