首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2058篇
  免费   161篇
  国内免费   5篇
化学   1729篇
晶体学   24篇
力学   17篇
数学   110篇
物理学   344篇
  2023年   25篇
  2022年   29篇
  2021年   38篇
  2020年   68篇
  2019年   86篇
  2018年   49篇
  2017年   29篇
  2016年   115篇
  2015年   95篇
  2014年   97篇
  2013年   113篇
  2012年   201篇
  2011年   223篇
  2010年   83篇
  2009年   69篇
  2008年   141篇
  2007年   107篇
  2006年   109篇
  2005年   110篇
  2004年   83篇
  2003年   52篇
  2002年   42篇
  2001年   23篇
  2000年   18篇
  1999年   7篇
  1998年   6篇
  1997年   11篇
  1996年   5篇
  1995年   6篇
  1994年   11篇
  1993年   8篇
  1992年   11篇
  1991年   7篇
  1990年   13篇
  1989年   7篇
  1987年   6篇
  1986年   10篇
  1985年   16篇
  1984年   17篇
  1983年   9篇
  1982年   5篇
  1981年   6篇
  1980年   5篇
  1979年   7篇
  1978年   6篇
  1977年   8篇
  1976年   7篇
  1975年   7篇
  1973年   4篇
  1972年   3篇
排序方式: 共有2224条查询结果,搜索用时 15 毫秒
101.
Engineering the size, composition, and morphology of platinum‐based nanomaterials can provide a great opportunity to improve the utilization efficiency of electrocatalysts and reinforce their electrochemical performances. Herein, three‐dimensional platinum–palladium hollow nanospheres with a dendritic shell (PtPd‐HNSs) are successfully fabricated through a facile and economic route, during which SiO2 microspheres act as the hard template for the globular cavity, whereas the triblock copolymer F127 contributes to the formation of the dendritic shell. In contrast with platinum hollow nanospheres (Pt‐HNSs) and commercial platinum on carbon (Pt/C) catalyst, the novel architecture shows a remarkable activity and durability toward the methanol oxidation reaction (MOR) owing to the coupled merits of bimetallic nanodendrites and a hollow interior. As a proof of concept, this strategy is also extended to trimetallic gold–palladium–platinum hollow nanospheres (AuPdPt‐HNSs), which paves the way towards the controlled synthesis of other bi‐ or multimetallic platinum‐based hollow electrocatalysts.  相似文献   
102.
Eu3+-doped Ca2SnO4 (solid solutions of Ca2−xEu2xSn1−xO4, 0?x?0.3) and Eu3+ and Y3+-codoped Ca2SnO4 (Ca1.8Y0.2Eu0.2Sn0.8O4) were prepared by solid-state reaction at 1400 °C in air. Rietveld analysis of the X-ray powder diffraction patterns revealed that Eu3+ replaced Ca2+ and Sn4+ in Eu3+-doped Ca2SnO4, and that Eu3+ replaced Ca2+ and Y3+ replaced Sn4+ in Ca1.8Y0.2Eu0.2Sn0.8O4. Red luminescence at 616 nm due to the electric dipole transition 5Do7F2 was observed in the photoluminescence (PL) spectra of Ca2−xEu2xSn1−xO4 and Ca1.8Y0.2Eu0.2Sn0.8O4 at room temperature. The maximum PL intensity in the solid solutions of Ca2−xEu2xSn1−xO4 was obtained for x=0.1. The PL intensity of Ca1.8Y0.2Eu0.2Sn0.8O4 was 1.26 times greater than that of Ca2−xEu2xSn1−xO4 with x=0.1.  相似文献   
103.
Directional crystallization from a binary mixture was performed by pseudo-NpT ensemble molecular dynamics. The initial crystal phase having a face-centered-cubic (fcc) structure grew toward the whole cell according to the temperature gradient in the universal cell. The growing crystal phase was not planar even though the solute molecules grew in two-dimensional coordinates because the solvent molecules disturbed the crystallization of the solute molecules at the diffusive crystal-solution interface. This represented the essential phenomenon of solute distribution during crystallization. Consequently, the growing crystal phase still contained solvent molecules having a liquid structure. The time change of the solute composition in the early phase of crystal growth showed an increase in solute composition as the time step proceeded. The resulting solute composition in this early phase was considered at different temperature gradients in the universal cell and it increased as the temperature of the initial crystal-solution interface increased. A new distribution coefficient model was proposed as a function of the difference between the local solute composition and bulk solute composition in the solution around the crystal-solution interface. The impurity-solvent distribution coefficient could be represented by the new model for faster growth of the lower temperature's initial interface. As regards a better distribution coefficient, there was found to be a very dilute solution phase over the crystal phase. The new variable "distribution rate" instead of the ambiguous variable "growth rate" was considered as a function of temperature gradient in the universal cell.  相似文献   
104.
Certain metal complexes are known as high-performance CO2 reduction photocatalysts driven by visible light. However, most of them rely on rare, precious metals as principal components, and integrating the functions of light absorption and catalysis into a single molecular unit based on abundant metals remains a challenge. Metal-organic frameworks (MOFs), which can be regarded as intermediate compounds between molecules and inorganic solids, are potential platforms for the construction of a simple photocatalytic system composed only of Earth-abundant nontoxic elements. In this work, we report that a tin-based MOF enables the conversion of CO2 into formic acid with a record high apparent quantum yield (9.8 % at 400 nm) and >99 % selectivity without the need for any additional photosensitizer or catalyst. This work highlights a new MOF with strong potential for photocatalytic CO2 reduction driven by solar energy.  相似文献   
105.
Unsymmetrical gold(III)-dithiolene complexes are potential candidates for molecular materials that exhibit thermal structural phase transitions. In this study, unsymmetrical ppy-gold(III) (ppy=C-deprotonated-2-phenylpyridine(−)) complexes [AuC5] and [AuC6] coordinated by dithiolene ligands containing tetrathiafulvalene (TTF) skeletons with pentylthio (2-{bis(pentylthio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate(2−)) and hexylthio groups (2-{bis(hexylthio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate(2−)) were synthesized. Both complexes exhibited a large absorption band at approximately 508 nm, owing to intramolecular ligand-to-ligand charge transfer. One-dimensional columnar structures with head-to-tail molecular arrangements around the metal ions were constructed in the crystals. The flexible alkylthio groups were intercalated into crystalline spaces between dithiolene ligands in the columns. [AuC5] exhibits a simple phase transition at 198 °C between crystalline and isotropic phases irreversibly. The crystalline phase of [AuC6] observed at 25 °C melted at 148 °C. Another crystalline phase grew above 148 °C with a very slow crystallization rate from the liquid phase and was completely transformed into an isotropic phase at 200 °C.  相似文献   
106.
Reactions occurring at surfaces and interfaces necessitate the creation of well-designed surface and interfacial structures. To achieve a combination of bulk material (i.e., framework) and void spaces, a meticulous process of “nano-architecting” of the available space is necessary. Conventional porous materials such as mesoporous silica, zeolites, and metal–organic frameworks lack advanced cooperative functionalities owing to their largely monotonous pore geometries and limited conductivities. To overcome these limitations and develop functional structures with surface-specific functions, the novel materials space-tectonics methodology has been proposed for future materials synthesis. This review summarizes recent examples of materials synthesis based on designing building blocks (i.e., tectons) and their hybridization, along with practical guidelines for implementing materials syntheses and state-of-the-art examples of practical applications. Lastly, the potential integration of materials space-tectonics with emerging technologies, such as materials informatics, is discussed.  相似文献   
107.
Crystalline triazine-based covalent organic frameworks (COFs) are aromatic nitrogen-rich porous materials. COFs typically show high thermal/chemical stability, and are promising for energy applications, but often require harsh synthesis conditions and suffer from low crystallinity. In this work, we propose an environmentally friendly route for the synthesis of crystalline COFs from CO2 molecules as a precursor. The mass ratio of CO2 conversion into COFs formula unit reaches 46.3 %. The synthesis consists of two steps; preparation of 1,4-piperazinedicarboxaldehyde from CO2 and piperazine, and condensation of the dicarboxaldehyde and melamine to construct the framework. The CO2-derived COF has a 3-fold interpenetrated structure of 2D layers determined by powder X-ray diffraction, high-resolution transmission electron microscopy, and select-area electron diffraction. The structure shows a high Brunauer–Emmett–Teller surface area of 945 m2 g−1 and high stability against strong acid (6 M HCl), base (6 M NaOH), and boiling water over 24 hours. Post-modification of the framework with oxone has been demonstrated to modulate hydrophilicity, and it exhibits proton conductivity of 2.5×10−2 S cm−1 at 85 °C, 95 % of relative humidity.  相似文献   
108.
We achieved the total synthesis of the histone deacetylase inhibitor spiruchostatin A, as the prelude to the preparation of a combinatorial library of its analogues. Two key reactions were an asymmetric acetate aldol reaction using a Zr-enolate and macrolactonization using the Shiina method.  相似文献   
109.
In an effort to develop an efficient synthetic method of highly diastereoselective (2′R)- and (2′S)-2′-deoxy[2′-2H]guanosines, chemoenzymatic conversion was investigated. The synthesis of (2′R > 98% de)-2′-deoxy[2′-2H]guanosine was achieved by biological transdeoxyribosylation using (2′R > 98% de)-2′-deoxy[2′-2H]uridine, 2,6-diaminopurine, and Enterobacter aerogenes AJ-11125, followed by treatment with adenosine deaminase. (2′S > 98% de)-2′-Deoxy[2′-2H]guanosine was synthesized from (2′S > 98% de)-2′-deoxy[2′-2H]uridine and 2,6-diaminopurine using thymidine phosphorylase and purine nucleoside phosphorylase instead of E. aerogenes AJ-11125.  相似文献   
110.
We report a novel method of one-step direct amination on polycrystalline diamond to produce functionalized surfaces for DNA micropatterning by photolithography. Polycrystalline diamond was exposed to UV irradiation in ammonia gas to generate amine groups directly. After patterning, optical microscopy confirmed that micropatterns covered with an Au mask were regular in size and shape. The regions outside the micropatterns were passivated with fluorine termination by C3F8 plasma, and the chemical changes on the two different surfaces--the amine groups inside the patterned regions by one-step direct amination and fluorine termination outside the patterned regions--were characterized by spatially resolved X-ray photoelectron spectroscopy (XPS). The patterned areas terminated with active amine groups were then immobilized with probe DNA via a bifunctional molecule. The sequence specificity was conducted by hybridizing fluorescently labeled target DNA to both complementary and noncomplementary probe DNA attached inside the micropatterns. The fluorescence micropatterns observed by epifluorescence microscopy corresponded to those imaged by optical microscopy. DNA hybridization and denaturation experiments on a DNA-modified diamond show that the diamond surfaces reveal superior stability. The influence of a different amination time on fluorescence intensity was compared. Different terminations as passivated layers were investigated, and as a result, fluorine termination points to the greatest signal-to-noise ratio.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号