首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   480篇
  免费   17篇
化学   299篇
晶体学   4篇
力学   12篇
数学   59篇
物理学   123篇
  2024年   2篇
  2023年   3篇
  2022年   22篇
  2021年   13篇
  2020年   8篇
  2019年   18篇
  2018年   16篇
  2017年   21篇
  2016年   22篇
  2015年   21篇
  2014年   20篇
  2013年   46篇
  2012年   39篇
  2011年   45篇
  2010年   25篇
  2009年   21篇
  2008年   32篇
  2007年   30篇
  2006年   22篇
  2005年   23篇
  2004年   18篇
  2003年   10篇
  2002年   9篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1996年   6篇
排序方式: 共有497条查询结果,搜索用时 15 毫秒
21.
Hydroxy‐mediated methoxy formation or stabilization is probably an important process in many methanol adsorption systems. Hydrogen atoms originating from the scission of the methanol O? H bond react with the substrate and form water. This process may result 1) in the production of additional surface defects as reactive centers for methoxy formation and 2) in the stabilization of methoxy groups by suppression of methanol formation.

  相似文献   

22.
Catalytic oxidation of methanol (MeOH) in the absence of noble metals and noble metal oxides as catalysts, and the use of metal-free materials are inexpensive and attractive process for practical use in electrocatalysis, sensors, and in direct methanol fuel cells. In previous works, it was found that the use of single-walled (SWCNT) or multi-walled (MWCNT) carbon nanotube paper electrodes instead of GC increases the catalytic efficiency of organic compounds oxidation in the presence of aromatic di-N-oxides by several times. In this work, the effect of non-covalent interactions on the catalytic efficiency of MeOH oxidation in the presence of 2,5-di-Me-pyrazine-di-N-oxide (Pyr1) in 0.1 M Bu4NClO4 solution in acetonitrile at SWCNT and MWСNT paper electrodes was studied by the methods of quantum chemical modeling, Raman spectroscopy, and using electrochemical data. New factors determined the features of mechanism of MeOH oxidation on CNT electrodes and lead to an increase in the catalytic efficiency of the electrode process in comparison with the GC electrode were established.  相似文献   
23.
24.
A sol–gel based hybrid process was developed by manipulating different techniques in sol–gel process to synthesize γ-alumina and (CuO, CuO + ZnO) doped γ-alumina spherical particles. Catalysts having spherical geometry have an important advantage over powders or pellets which are impervious to fluids, when packed in a reactor. Boehmite sol was used as alumina precursor for synthesizing porous γ-alumina and doped materials. γ-alumina particles having 5 wt% CuO, 4 wt% CuO + 1 wt% ZnO, 3 wt% CuO + 2 wt% ZnO and 2 wt% CuO + 3 wt% ZnO were prepared by adding required amounts of Cu(NO3)2 and Zn(NO3)2 solutions prior to gelation of the sol. Methanol dehydration studies were carried out by employing these synthesized catalysts. Hundred percent conversion of methanol to dimethyl ether was observed with (4 wt% CuO + 1 wt% ZnO)-γ-alumina and (5 wt% CuO)-γ-alumina microspheres at 325 and 350 °C, respectively.  相似文献   
25.
Hydrolysis and polycondensation reactions of tetraethoxysilane (TEOS) with 3,3,3-trifluoropropyl-trimethoxysilane (TFMS) or 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFES) were used to synthesize xerogels functionalized with fluorine-containing groups. According to transmission electron microscopy, the skeletons of synthesized polysiloxane xerogels have globular structures and consist of agglomerates of particles with fluorinated groups on their surfaces. FTIR spectroscopy showed that primary xerogel particles possess spatial polysiloxane networks, with fluorinated groups along with silanol groups and water in the surface layer. According to thermal analyses, the water content was 3–8 wt.%, and it decreased with increasing length of the fluorinated chain. Thermal destruction of the surface layer starts above 300 °C. The sorbents that were obtained were predominantly mesoporous materials with well-developed porous structures (SBET = 400–960 m2 g−1, Vs = 0.66–0.93 cm3 g−1). The influence of the TEOS/functional silane ratio and the natures of the functional groups on the structural and adsorptive properties were shown. The samples synthesized are organophilic. The affinity for n-hexane increases with increasing length of the fluorine-containing chain (PFES) and the content of fluorinated groups in the surface layer. The hybrid organic–inorganic materials that were obtained can be used for adsorption of hydrocarbons, including oil, from water.  相似文献   
26.
In the last decades it was observed that Clifford algebras and geometric product provide a model for different physical phenomena. We propose an explanation of this observation based on the theory of bounded symmetric domains and the algebraic structure associated with them. The invariance of physical laws is a result of symmetry of the physical world that is often expressed by the symmetry of the state space for the system implying that this state space is a symmetric domain. For example, the ball of all possible velocities is a bounded symmetric domain. The symmetry on this ball follow from the symmetry of the space-time transformations between two inertial systems, which fixes the so-called symmetric velocity between them. The Lorenz transformations acts on the ball Sof symmetric velocities by conformal transformations. The ball Sis a spin ball (type IV in Cartan's classification). The Lie algebra of this ball is defined a triple product that is closely related to geometric product. The relativistic dynamic equations in mechanics and for the Lorenz force is described by this Lie algebra and the triple product.  相似文献   
27.
We investigate the geometric phase or Berry phase acquired by a spin half which is both subject to a slowly varying magnetic field and weakly coupled to a dissipative environment (either quantum or classical). We study how this phase is modified by the environment and find that the modification is of a geometric nature. While the original Berry phase (for an isolated system) is the flux of a monopole field through the loop traversed by the magnetic field, the environment-induced modification of the phase is the flux of a quadrupolelike field. We find that the environment-induced phase is complex, and its imaginary part is a geometric contribution to dephasing. Its sign depends on the direction of the loop. Unlike the Berry phase, this geometric dephasing is gauge invariant for open paths of the magnetic field.  相似文献   
28.
A boron-dipyrromethene (BODIPY) derivative reactive towards amino groups of proteins (NHS-Ph-BODIPY) was synthesized. Spectroscopic and photophysical properties of amine-reactive NHS-Ph-BODIPY and its non-reactive precursor (COOH-Ph-BODIPY) in a number of organic solvents were investigated. Both fluorescent dyes were characterized by green absorption (521–532 nm) and fluorescence (538–552 nm) and medium molar absorption coefficients (46,500–118,500 M−1·cm−1) and fluorescence quantum yields (0.32 – 0.73). Solvent polarizability and dipolarity were found to play a crucial role in solvent effects on COOH-Ph-BODIPY and NHS-Ph-BODIPY absorption and emission bands maxima. Quantum-chemical calculations were used to show why solvent polarizability and dipolarity are important as well as to understand how the nature of the substituent affects spectroscopic properties of the fluorescent dyes. NHS-Ph-BODIPY was used for fluorescent labeling of a number of proteins. Conjugation of NHS-Ph-BODIPY with bovine serum albumin (BSA) resulted in bathochromic shifts of absorption and emission bands and noticeable fluorescence quenching (about 1.5 times). It was demonstrated that the sensitivity of BSA detection with NHS-Ph-BODIPY was up to eight times higher than with Coomassie brilliant blue while the sensitivity of PII-like protein PotN (PotN) detection with NHS-Ph-BODIPY and Coomassie brilliant blue was almost the same. On the basis of the molecular docking results, the most probable binding sites of NHS-Ph-BODIPY in BSA and PotN and the corresponding binding free energies were estimated.  相似文献   
29.
The first organometallic BOPHY (BOPHY=bis(difluoroboron)‐1,2‐bis{(pyrrol‐2‐yl)methylene}hydrazine) containing two ferrocene substituents was prepared through a Knoevenagel condensation between tetramethyl substituted BOPHY and ferrocene carboxaldehyde. An unprecedentedly strong long‐range (≈17.2 Å) metal–metal coupling in this new complex was investigated using electrochemical, spectroelectrochemical, and chemical oxidation methods. Electrochemical data is indicative of a 200 mV separation between the first and the second ferrocene‐centered oxidation processes. Formation of the mixed‐valence states and appearance and disappearance of two NIR bands were observed during stepwise oxidation of the first organometallic BOPHY. The electronic structure and the nature of the excited states in this new chromophore were studied by DFT and TDDFT calculations.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号