Joule heating is inevitable when an electric field is applied across a conducting medium. It would impose limitations on the performance of electrokinetic microfluidic devices. This article presents a 3-D mathematical model for Joule heating and its effects on the EOF and electrophoretic transport of solutes in microfluidic channels. The governing equations were numerically solved using the finite-volume method. Experiments were carried out to investigate the Joule heating associated phenomena and to verify the numerical models. A rhodamine B-based thermometry technique was employed to measure the solution temperature distributions in microfluidic channels. The microparticle image velocimetry technique was used to measure the velocity profiles of EOF under the influence of Joule heating. The numerical solutions were compared with experimental results, and reasonable agreement was found. It is found that with the presence of Joule heating, the EOF velocity deviates from its normal "plug-like" profile. The numerical simulations show that Joule heating not only accelerates the sample transport but also distorts the shape of the sample band. 相似文献
Smoke temperature evolution in the upper layer of compartment fire, which is critical for the prediction of potential flashover, was experimentally investigated in a real building. Three-millimeter polyethylene (PE) slabs attached on the internal walls were employed as the lining material to address the effect of the melting and combustion of the lining material on the smoke temperature. A corner gasoline pool fire was utilized as the fire source. Two thermocouple trees, mounted vertically at the center and the open door, and a high-definition camera were utilized to record the smoke temperature history and experimental video. Meanwhile, some furniture was loaded to study its enhancement feature on fire intensity. Heat release rates (HRRs) at different stages were analyzed based on MQH method (McCaffrey, Quintiere and Harkleroad) and pool fire theory. Smoke temperature was estimated through an improved MQH correlation considering the melting of the PE slabs and an empirical model, BFD curve (Barnett in Fire Saf J 37: 437–463, 2002) combined. The results show that both the maximum HRR and smoke temperature, 925.91 kW and 491.7 °C, are lower than the critical values of flashover. The PE lining greatly intensifies the fire power and the resulting smoke temperature compared with the ones in noncombustible wall scenario. Combustion of the molten PE flowing down from the walls would lead to a secondary peak in smoke temperature curve, which is rarely considered in previous work.
In this paper, an improved recovery method for target ssDNA using amino-modified silica-coated magnetic nanoparticles (ASMNPs) is reported. This method takes advantages of the amino-modified silica-coated magnetic nanoparticles prepared using water-in-oil microemulsion technique, which employs amino-modified silica as the shell and iron oxide as the core of the magnetic nanoparticles. The nanoparticles have a silica surface with amino groups and can be conjugated with any desired bio-molecules through many existing amino group chemistry. In this research, a linear DNA probe was immobilized onto nanoparticles through streptavidin conjugation using covalent bonds. A target ssDNA(I) (5′-TMR-CGCATAGGGCCTCGTGATAC-3′) has been successfully recovered from a crude sample under a magnet field through their special recognition and hybridization. A designed ssDNA fragment of severe acute respiratory syndrome (SARS) virus at a much lower concentration than the target ssDNA(I) was also recovered with high efficiency and good selectivity. 相似文献
The monodisperse, porous poly(chloromethylstyrene-co-divinylbenzene) beads of 7.9 microm were prepared by a single-step swelling and polymerization method. The seed particles prepared by dispersion polymerization exhibited good absorption of the monomer phase. Based on this media, a weak cation-exchange (WCX) stationary phase for HPLC was synthesized by a new chemically modified method. The prepared resin has advantages of biopolymer separation, high column efficiency, low column backpressure, high protein mass recovery, and good resolution for proteins. The dynamic protein-loading capacity of the synthesized WCX packings was 18.2 mg/g. Five proteins were separated in 3.0 min using the synthesized WCX stationary phase. The experimental results show that the obtained WCX resin has very weak hydrophobicity. The WCX resin was also used for the rapid separation and purification of lysozyme from egg white in 5.0 min with only one step. The purity and specific bioactivity of the purified lysozyme were found to be more than 93% and 70 245 U/mg, respectively. 相似文献
Methanol adsorption on clean and hydrated anatase TiO(2)(001)-1 x 1 is studied using density functional theory calculations and first principles molecular dynamics simulations. It is found that (i) dissociative adsorption is favored on clean TiO(2)(001) at both low and high methanol coverages; (ii) on the partially hydrated surface, methanol dissociation is not affected by the coadsorbed water and can still occur very easily; (iii) the dissociative adsorption energy of methanol is always larger than that of water under similar conditions. This implies that water replacement by methanol is energetically favored, in agreement with recent experimental observations on colloidal anatase nanoparticles. 相似文献
A series of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-based organic-inorganic hybrid materials for anion exchange were prepared through sol-gel process of polymer precursors PPO-Si(OCH3)3. PPO-Si(OCH3)3 were obtained from the reaction of bromomethylated PPO with 3-aminopropyl-trimethoxysilane (A1110). These polymer precursors then underwent hydrolysis and condensation with additional A1110 to generate hybrid materials. The reaction to produce polymer precursors was identified by FTIR; while FTIR, TGA, XRD, SEM, as well as conventional ion exchange capacity (IEC) measurements were conducted for the structures and properties of the prepared hybrids. TGA results show that this series of hybrid materials possess high thermal stability; XRD and SEM indicate that the prepared hybrid materials are amorphous and the inorganic and organic contents show good compatibility if the ratio between them is proper. The IEC values of the hybrid materials due to the amine groups range from 1.13 mmol/gBPPO (material i) to 4.80 mmol/gBPPO (material iv). 相似文献
The Q-band position of tin-centered 5, 9, 14, 18, 23, 27, 32, 36-octabutoxy 2, 3-phthalocyanine(SnNc(OBu)8) exhibits dramatic red-shift as mixed with SnCl2 in CH2Cl2. 相似文献
Pulse corona plasma was used as an activation method fordehydrogenative coupling of methane at the normal temperature and under' the normal pressure. The exprimental results showed that a great enhancement in the selectivity to C2 was achieved by the combination of pulse corona plasma with a y-Mn2OO3/Y-A12O3 catalyst. The distribution of C2 hydrocarbons was mainly affected by the power input and the nature of the catalyst. In addition, the gas stream direction exerted an influence upon the C2 yield, especially at higher power input. 相似文献