全文获取类型
收费全文 | 21179篇 |
免费 | 3433篇 |
国内免费 | 2414篇 |
专业分类
化学 | 14647篇 |
晶体学 | 217篇 |
力学 | 1528篇 |
综合类 | 198篇 |
数学 | 2346篇 |
物理学 | 8090篇 |
出版年
2024年 | 70篇 |
2023年 | 406篇 |
2022年 | 713篇 |
2021年 | 803篇 |
2020年 | 842篇 |
2019年 | 805篇 |
2018年 | 687篇 |
2017年 | 598篇 |
2016年 | 976篇 |
2015年 | 1025篇 |
2014年 | 1173篇 |
2013年 | 1541篇 |
2012年 | 1812篇 |
2011年 | 1988篇 |
2010年 | 1261篇 |
2009年 | 1206篇 |
2008年 | 1237篇 |
2007年 | 1145篇 |
2006年 | 1127篇 |
2005年 | 934篇 |
2004年 | 833篇 |
2003年 | 617篇 |
2002年 | 575篇 |
2001年 | 505篇 |
2000年 | 460篇 |
1999年 | 441篇 |
1998年 | 383篇 |
1997年 | 323篇 |
1996年 | 338篇 |
1995年 | 322篇 |
1994年 | 301篇 |
1993年 | 234篇 |
1992年 | 250篇 |
1991年 | 210篇 |
1990年 | 182篇 |
1989年 | 153篇 |
1988年 | 91篇 |
1987年 | 90篇 |
1986年 | 77篇 |
1985年 | 76篇 |
1984年 | 42篇 |
1983年 | 45篇 |
1982年 | 37篇 |
1981年 | 22篇 |
1980年 | 15篇 |
1979年 | 8篇 |
1977年 | 5篇 |
1975年 | 6篇 |
1969年 | 4篇 |
1957年 | 8篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
The photoinduced reactions of the complexes Mg+-SCNC2H5 and Mg+-NCSC2H5 are studied comparatively in the spectral range of 230-440 nm. One-photon excitation of the complexes through the Mg+ chromophore (3 2P <-- 3 2S) gives rise to the evaporative fragment as well as the molecular activation and charge transfer products. The action spectra of the complexes consist of three broad peaks for Mg+-SCNC2H5 and two for Mg+-NCSC2H5, which accord with the structures obtained from quantum mechanics calculations. These calculations reveal two association isomers for Mg+-SCNC2H5: one is with Mg+ being linked to the S atom and the other to the N atom. The former is more stable than the latter by only 0.23 eV. Both of the isomers have been shown to exist in the complex source employed in our experiments. On the other hand, only one stable structure is found for the complex Mg+-NCSC2H5 characterized by the Mg+-N linkage. In general, the photofragments are dominated by Mg+ at lambda > 400 nm, which decreases with decreasing wavelength accompanied by the increase in other photoproducts. In addition, the branching ratios of Mg+ to other photoproducts are nearly constant in the short wavelength region but decrease with decreasing wavelength. The observed photoreactions have been reasonably explained. 相似文献
63.
The novel versatile cobalt(I) tris-carbene complex [(TIMEN(xyl))Co]Cl (1) (where TIMEN = (tris[2-(3-arylimidazol-2-ylidene)ethyl]amine) reacts with CO, one-electron oxidizers such as CH(2)Cl(2), and O(2) to yield the cobalt complexes [(TIMEN(xyl))Co(CO)]Cl (2), [(TIMEN(xyl))Co(Cl)]Cl (3), and peroxo species [(TIMEN(xyl))Co(O(2))](BPh(4)) (5). All new complexes were fully characterized by (1)H NMR, UV/vis, and IR spectroscopy as well as superconducting quantum interference device (SQUID) magnetization measurements and single-crystal X-ray crystallography. The nucleophilic character of the eta(2)-bound dioxygen ligand in 5 was confirmed by density functional theory (DFT) studies and allows for oxygen-transfer reactions with electron-deficient organic substrates, such as benzoyl chloride. 相似文献
64.
Ke Yang Zhi Li Chong Liu Yunjian Li Qingyue Hu Mazen Elsaid Bijin Li Jayabrata Das Yanfeng Dang Debabrata Maiti Haibo Ge 《Chemical science》2022,13(20):5938
The transient directing group (TDG) strategy allowed long awaited access to the direct β-C(sp3)–H functionalization of unmasked aliphatic aldehydes via palladium catalysis. However, the current techniques are restricted to terminal methyl functionalization, limiting their structural scopes and applicability. Herein, we report the development of a direct Pd-catalyzed methylene β-C–H arylation of linear unmasked aldehydes by using 3-amino-3-methylbutanoic acid as a TDG and 2-pyridone as an external ligand. Density functional theory calculations provided insights into the reaction mechanism and shed light on the roles of the external and transient directing ligands in the catalytic transformation.Aliphatic aldehydes are among the most common structural units in organic and medicinal chemistry research. Direct C–H functionalization has enabled efficient and site-selective derivatization of aliphatic aldehydes.Simple aliphatic functional groups enrich the skeletal backbones of many natural products, pharmaceuticals, and other industrial materials, influencing the utility and applications of these substances and dictating their reactivity and synthetic modification pathways. Aliphatic aldehydes are some of the most ubiquitous structural units in organic materials.1 Their relevance in nature and industry alike, combined with their reactivity and synthetic versatility, attracted much attention from the synthetic organic and medicinal chemistry communities over the years (Fig. 1).2 Efficient means to the functionalization of these molecules have always been highly sought after.Open in a separate windowFig. 1Select aliphatic aldehyde-containing medicines and biologically active molecules.Traditionally, scientists have utilized the high reactivity of the aldehyde moiety in derivatizing a variety of functional groups by the means of red-ox and nucleophilic addition reactions. The resourceful moiety was also notoriously used to install functional groups at the α-position via condensation and substitution pathways.3 Although β-functionalization is just as robust, it has generally been more restrictive as it often requires the use of α,β-unsaturated aldehydes.4,5 Hence, transition metal catalysis emerged as a powerful tool to access β-functionalization in saturated aldehydes.6 Most original examples of metal-catalyzed β-C–H functionalization of aliphatic aldehydes required the masking of aldehydes into better metal coordinating units since free unmasked aldehydes could not form stable intermediates with metals like palladium on their own.7 Although the masking of the aldehyde moiety into an oxime, for example, enabled the formation of stable 5-membered palladacycles, affording β-functionalized products, this system requires the installation of the directing group prior to the functionalization, as well as the subsequent unmasking upon the reaction completion, compromising the step economy and atom efficiency of the overall process.8 Besides, some masking and unmasking protocols might not be compatible with select substrates, especially ones rich in functional groups. As a result, the development of a one-step direct approach to the β-C–H functionalization of free aliphatic aldehydes was a demanding target for synthetic chemists.α-Amino acids have been demonstrated as effective transient directing groups (TDGs) in the remote functionalization of o-alkyl benzaldehydes and aliphatic ketones by the Yu group in 2016.9 Shortly after, our group disclosed the first report on the direct β-C–H arylation of aliphatic aldehydes using 3-aminopropanoic acid or 3-amino-3-methylbutanoic acid as a TDG.10 The TDG was found to play a similar role to that of the oxime directing group by binding to the substrate via reversible imine formation, upon which, it assists in the assembly of a stable palladacycle, effectively functionalizing the β-position.11 Since the binding of the TDG is reversible and temporary, it is automatically removed upon functionalization, yielding an efficient and step-economic transformation. This work was succeeded by many other reports that expanded the reaction and the TDG scopes.12–14 However, this system suffers from a significant restriction that demanded resolution; only substitution of methyl C–H bonds of linear aldehydes was made possible via this approach (Scheme 1a–e). The steric limitations caused by incorporating additional groups at the β-carbon proved to compromise the formation of the palladacycle intermediate, rendering the subsequent functionalization a difficult task.12Open in a separate windowScheme 1Pd-catalyzed β-C–H bond functionalization of aliphatic aldehydes enabled by transient directing groups.Encouraged by the recent surge in use of 2-pyridone ligands to stabilize palladacycle intermediates,15,16 we have successfully developed the first example of TDG-enabled Pd-catalyzed methylene β-C–H arylation in primary aldehydes via the assistance of 2-pyridones as external ligands (Scheme 1f). The incorporation of 2-pyridones proved to lower the activation energy of the C–H bond cleavage, promoting the formation of the intermediate palladacycles even in the presence of relatively bulky β-substituents.17 This key advancement significantly broadens the structural scopes and applications of this process and promises future asymmetric possibilities, perhaps via the use of a chiral TDG or external ligand or both. Notably, a closely related work from Yu''s group was published at almost the same time.18We commenced our investigation of the reaction parameters by employing n-pentanal (1a) as an unbiased linear aldehyde and 4-iodoanisole (2a) in the presence of catalytic Pd(OAc)2 and stoichiometric AgTFA, alongside 3-amino-3-methylbutanoic acid (TDG1) and 3-(trifluoromethyl)-5-nitropyridin-2-ol (L1) at 100 °C (ii) sources proved Pd(OAc)2 to be the optimal catalyst, while Pd(TFA)2, PdCl2 and PdBr2 provided only moderate yields (entries 10–12). Notably, a significantly lower yield was observed in the absence of the 2-pyridone ligand, and no desired product was isolated altogether in the absence of the TDG (entries 13 and 14). The incorporation of 15 mol% Pd catalyst was deemed necessary after only 55% yield of 3a was obtained when 10 mol% loading of Pd(OAc)2 was instead used (entry 15).Optimization of reaction conditionsa
Open in a separate windowaReaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), Pd source (15 mol%), AgTFA (0.3 mmol), L1, TDG1, solvent (2.0 mL), 100 °C, 12 h. Yields are based on 1a, determined by 1H-NMR using dibromomethane as an internal standard.bIsolated yield.cPd(OAc)2 (10 mol%).To advance our optimization of the reaction conditions, a variety of 2-pyridones and TDGs were tested (Scheme 2). Originally, pyridine-2(1H)-one (L2) was examined as the external ligand, but it only yielded the product (3a) in 7% NMR yield. Similarly, other mono- and di-substituted 2-pyridone ligands (L3–L10) also produced low yields, fixating L1 as the optimal external ligand. Next, various α- and β-amino acids (TDG1–10) were evaluated, yet TDG1 persisted as the optimal transient directing group. These amino acid screening results also suggest that a [5,6]-bicyclic palladium species is likely the key intermediate in this protocol since only β-amino acids were found to provide appreciable yields, whereas α-amino acids failed to yield more than trace amounts of the product. The supremacy of TDG1 when compared to other β-amino acids is presumably due to the Thorpe–Ingold effect that perhaps helps facilitate the C–H bond cleavage and stabilize the [5,6]-bicyclic intermediate further.Open in a separate windowScheme 2Optimization of 2-pyridone ligands and transient directing groups.With the optimized reaction conditions in hand, substrate scope study of primary aliphatic aldehydes was subsequently carried out (Scheme 3). A variety of linear primary aliphatic aldehydes bearing different chain lengths provided the corresponding products 3a–e in good yields. Notably, relatively sterically hindered methylene C–H bonds were also functionalized effectively (3f and 3g). Additionally, 4-phenylbutanal gave rise to the desired product 3h in a highly site-selective manner, suggesting that functionalization of the methylene β-C–H bond is predominantly favored over the more labile benzylic C–H bond. It is noteworthy that the amide group was also well-tolerated and the desired product 3j was isolated in 60% yield. As expected, with n-propanal as the substrate, β-mono- (3k1) and β,β-disubstituted products (3k2) were isolated in 22% and 21% yields respectively. However, in the absence of the key external 2-pyridone ligand, β-monosubstituted product (3k1) was obtained exclusively, albeit with a low yield, indicating preference for functionalizing the β-C(sp3)–H bond of the methyl group over the benzylic methylene group.Open in a separate windowScheme 3Scope of primary aliphatic aldehydes. Reaction conditions: 1 (0.2 mmol), 2a (0.4 mmol), Pd(OAc)2 (15 mol%), AgTFA (0.3 mmol), L1 (60 mol%), TDG1 (60 mol%), HFIP (1.8 mL), HOAc (0.2 mL), 100 °C, 12 h. Isolated yields. aL1 (60 mol%) was absent and yields are given in parentheses.Next, substrate scope study on aryl iodides was surveyed (Scheme 4). Iodobenzenes bearing either an electron-donating or electron-withdrawing group at the para-, meta-, or ortho-position were all found compatible with our catalytic system (3l–3ah). Surprisingly, ortho-methyl- and fluoro-substituted aryl iodides afforded the products in only trace amounts. However, aryl iodide with ortho-methoxy group provided the desired product 3ac in a moderate yield. Notably, a distinctive electronic effect pattern was not observed in the process. It should be mentioned that arylated products bearing halogen, ester, and cyano groups could be readily converted to other molecules, which significantly improves the synthetic applicability of the process. Delightfully, aryl iodide-containing natural products like ketoprofen, fenchol and menthol were proven compatible, supplying the corresponding products in moderate yields. Unfortunately, (hetero)aryl iodides including 2-iodopyridine, 3-iodopyridine, 4-iodopyridine and 4-iodo-2-chloropyridine failed to produce the corresponding products. Although our protocol provides a novel and direct pathway to construct β-arylated primary aliphatic aldehydes, the yields of most examples are modest. The leading reasons for this compromise are the following: (1) aliphatic aldehydes are easily decomposed or oxidized to acids; (2) some of the prepared β-arylated aldehyde products may be further transformed into the corresponding α,β-unsaturated aldehydes.Open in a separate windowScheme 4Scope of aryl iodides. Reaction conditions: 1a (0.2 mmol), 2 (0.4 mmol), Pd(OAc)2 (15 mol%), AgTFA (0.3 mmol), L1 (60 mol%), TDG1 (60 mol%), HFIP (1.8 mL), HOAc (0.2 mL), 100 °C, 12 h. Isolated yields.Density functional theory (DFT) calculations were performed to help investigate the reaction mechanism and to elucidate the role of the ligand in improving the reactivity (Fig. 2). The condensation of the aliphatic aldehyde 1a with the TDG to form imine-1a was found thermodynamically neutral (ΔG° = −0.1 kcal mol−1). As a result, it was permissible to use imine-1a directly in the calculations. According to the calculations results, the precatalyst [Pd(OAc)2]3, a trimeric complex, initially experiences dissociation and ligand metathesis with imine-1a to generate the Pd(ii) intermediate IM1, which is thermodynamically favorable by 21.9 kcal mol−1. Consequently, the deprotonated imine-1a couples to the bidentate ligand to form the stable six-membered chelate complex IM1. Therefore, IM1 is indeed the catalyst resting state and serves as the zero point to the energy profile. We have identified two competitive pathways for the Pd(ii)-catalyzed C–H activation starting from IM1, one of which incorporates L1 and another which does not. On the one hand, an acetate ligand substitutes one imine-1a chelator in IM1 to facilitate the subsequent C–H activation leading to IM2, which undergoes C(sp3)–H activation through concerted metalation-deprotonation (CMD) viaTS1 (ΔG‡ = 37.4 kcal mol−1). However, this kinetic barrier is thought to be too high to account for the catalytic activity at 100 °C. On the other hand, the chelate imine-1a could be replaced by two N-coordinated ligands (L1) leading to the Pd(ii) complex IM3. This process is endergonic by 6.4 kcal mol−1. To allow the ensuing C–H activation, IM3 dissociates one ligand (L1) producing the active species IM4, which undergoes TS2 to cleave the β-C(sp3)–H bond and form the [5,6]-bicyclic Pd(ii) intermediate IM5. Although this step features an energy barrier of 31.2 kcal mol−1, it is thought to be feasible under the experimental conditions (100 °C). Possessing similar coordination ability to that of pyridine, the ligand (L1) effectively stabilizes the Pd(ii) center in the C–H activation process, indicating that this step most likely involves a manageable kinetic barrier. This result explicates the origin of the ligand-enabled reactivity (TS2vs.TS1). Additionally, we considered the γ-C(sp3)–H activation pathway viaTS2′ which was found to have a barrier of 35.5 kcal mol−1. The higher energy barrier of TS2′ compared to that of TS2 is attributed to its larger ring strain in the [6,6]-bicyclic Pd(ii) transition state, which reveals the motive for the site-selectivity. Reverting back to the supposed pathway, upon the formation of the bicyclic intermediate IM5, it undergoes ligand/substrate replacement to afford intermediate IM6, at which the Ar–I coordinates to the Pd(ii) center to enable oxidative addition viaTS3 (ΔG‡ = 27.4 kcal mol−1) leading to the five-coordinate Pd(iv) complex IM7. Undergoing direct C–C reductive elimination in IM7 would entail a barrier of 29.6 kcal mol−1 (TS4). Alternatively, iodine abstraction by the silver(i) salt in IM7 is thermodynamically favorable and irreversible, yielding the Pd(iv) intermediate IM8 coordinated to a TFA ligand. Subsequently, C–C reductive coupling viaTS5 generates the Pd(ii) complex IM9 and concludes the arylation process. This step was found both kinetically facile (6.1 kcal mol−1) and thermodynamically favorable (30.7 kcal mol−1). Finally, IM9 reacts with imine-1avia metathesis to regenerate the palladium catalyst IM1 and release imine-3a in a highly exergonic step (21.0 kcal mol−1). Ultimately, imine-3a undergoes hydrolysis to yield the aldehyde product 3a and to release the TDG.Open in a separate windowFig. 2Free energy profiles for the ligand-promoted Pd(ii)-catalyzed site-selective C–H activation and C–C bond formation, alongside the optimized structures of the C–H activation transition states TS1 and TS2 (selected bond distances are labelled in Å). Energies are relative to the complex IM1 and are mass-balanced. 相似文献
Entry | Pd source | L (mol%) | TDG1 (mol%) | Solvent (v/v, mL) | Yield (%) |
---|---|---|---|---|---|
1 | Pd(OAc)2 | L1 (30) | TDG1 (40) | HFIP | 30 |
2 | Pd(OAc)2 | L1 (30) | TDG1 (40) | AcOH | <5 |
3 | Pd(OAc)2 | L1 (30) | TDG1 (40) | HFIP/AcOH (1 : 1) | 28 |
4 | Pd(OAc)2 | L1 (30) | TDG1 (40) | HFIP/AcOH (9 : 1) | 47 |
5 | Pd(OAc)2 | L1 (30) | TDG1 (40) | HFIP/AcOH (1 : 9) | <5 |
6 | Pd(OAc)2 | L1 (30) | TDG1 (60) | HFIP/AcOH (9 : 1) | 50 |
7 | Pd(OAc)2 | L1 (30) | TDG1 (80) | HFIP/AcOH (9 : 1) | 25 |
8 | Pd(OAc)2 | L1 (60) | TDG1 (60) | HFIP/AcOH (9 : 1) | 70(68)b |
9 | Pd(OAc)2 | L1 (75) | TDG1 (60) | HFIP/AcOH (9 : 1) | 51 |
10 | Pd(TFA)2 | L1 (60) | TDG1 (60) | HFIP/AcOH (9 : 1) | 60 |
11 | PdCl2 | L1 (60) | TDG1 (60) | HFIP/AcOH (9 : 1) | 52 |
12 | PdBr2 | L1 (60) | TDG1 (60) | HFIP/AcOH (9 : 1) | 54 |
13 | Pd(OAc)2 | — | TDG1 (60) | HFIP/AcOH (9 : 1) | 9 |
14 | Pd(OAc)2 | L1 (60) | — | HFIP/AcOH (9 : 1) | 0 |
15c | Pd(OAc)2 | L1 (60) | TDG1 (60) | HFIP/AcOH (9 : 1) | 55 |
65.
Xu Li Junwei Hu Xuedan Zhao Juanjuan Li Yuelai Chen 《Experimental & molecular medicine》2022,54(6):697
The Piezo channel family, including Piezo1 and Piezo2, includes essential mechanosensitive transduction molecules in mammals. Functioning in the conversion of mechanical signals to biological signals to regulate a plethora of physiological processes, Piezo channels, which have a unique homotrimeric three-blade propeller-shaped structure, utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways. Piezo channels have a wide range of biological roles in various human systems, both in vitro and in vivo. Currently, there is a lack of comprehensive understanding of their antagonists and agonists, and therefore further investigation is needed. Remarkably, increasingly compelling evidence demonstrates that Piezo channel function in the urinary system is important. This review article systematically summarizes the existing evidence of the importance of Piezo channels, including protein structure, mechanogating mechanisms, and pharmacological characteristics, with a particular focus on their physiological and pathophysiological roles in the urinary system. Collectively, this review aims to provide a direction for future clinical applications in urinary system diseases.Subject terms: Bladder disease, Bladder cancer, Prostate cancer, Oncogenesis 相似文献
66.
Shunli Ni Sheng Ma Yuhang Zhang Jie Yuan Haitao Yang Zouyouwei Lu Ningning Wang Jianping Sun Zhen Zhao Dong Li Shaobo Liu Hua Zhang Hui Chen Kui Jin Jinguang Cheng Li Yu Fang Zhou Xiaoli Dong Jiangping Hu Hong-Jun Gao Zhongxian Zhao 《中国物理快报》2021,(5):133-137
We systematically measure the superconducting(SC) and mixed state properties of high-quality CsV_3 Sb_5 single crystals with T_c~3.5 K.We find that the upper critical field H_(c2)(T) exhibits a large anisotropic ratio of H_(c2)~(ab)/H_(c2)~c~9 at zero temperature and fitting its temperature dependence requires a minimum two-band effective model.Moreover,the ratio of the lower critical field,H_(c1)~(ab)/H_(c1)~c,is also found to be larger than 1,which indicates that the in-plane energy dispersion is strongly renormalized near Fermi energy.Both H_(c1)(T) and SC diamagnetic signal are found to change little initially below T_c~3.5 K and then to increase abruptly upon cooling to a characteristic temperature of ~2.8 K.Furthermore,we identify a two-fold anisotropy of in-plane angular-dependent magnetoresistance in the mixed state.Interestingly,we find that,below the same characteristic T~2.8 K,the orientation of this two-fold anisotropy displays a peculiar twist by an angle of 60° characteristic of the Kagome geometry.Our results suggest an intriguing superconducting state emerging in the complex environment of Kagome lattice,which,at least,is partially driven by electron-electron correlation. 相似文献
67.
Yuhan Hu Fang Chen Kexin Zhou Zhe Zhang Fei Li Jianfeng Zhang Youzhi Tang Zhen Jin 《Molecules (Basel, Switzerland)》2022,27(15)
The novel pleuromutilin derivative, which showed excellent in vitro antibacterial activity against MRSA, 22-(2-(2-(4-((4-(4-nitrophenyl)piperazin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)acetamido)phenyl)thioacety-l-yl-22-deoxypleuromutilin (Z33), was synthesized and characterized in our previous work. In this study, the preliminary pharmacodynamics and safety of Z33 were further evaluated. In in vitro antibacterial activity assays, Z33 was found to be a potent bactericidal antibiotic against MRSA that induced dose-dependent growth inhibition and long-term post-antibiotic effect (PAE). The drug-resistance test demonstrated that Z33 possessed a narrow mutant selection window and lower propensities to select resistance than that of tiamulin. Cytochrome P450 (CYP450) inhibition assay determined that the inhibitory effect of Z33 was similar to that of tiamulin against the activity of CYP3A4, and was lower than that of tiamulin on the activity of CYP2E1. Toxicity determination showed that both Z33 and tiamulin displayed low cytotoxicity of RAW264.7 cells. Furthermore, Z33 was found to be a high-security compound with a 50% lethal dose (LD50) above 5000 mg/kg in the acute oral toxicity test in mice. In an in vivo antibacterial activity test, Z33 displayed better therapeutic effectiveness than tiamulin in the neutropenic mouse thigh infection model. In summary, Z33 was worthy of further development as a highly effective and safe antibiotic agent against MRSA infection. 相似文献
68.
Jinlong Cai Yongtong Xiong Xiang Zhu Jinyu Hu Yunping Wang Junkai Li Jianfeng Wu Qinglai Wu 《Molecules (Basel, Switzerland)》2022,27(15)
The Kleier model and Carrier-mediated theory are effective for molecularly designing pesticides with phloem mobility. However, the single Kleier model or Carrier-mediated theory cannot achieve a reliable explanation of the phloem mobility of all exogenous substances. A detailed investigation of the two models and the scope of their applications can provide a more accurate and highly efficient basis for the guidance of the design and development of phloem-mobile pesticides. In the present paper, a strategy using active ingredient-amino acid conjugates as mode compounds is developed based on Carrier-mediated theory. An N-alkylated amino acid is used to improve the pesticide’s physicochemical properties following the Kleier model, thus allowing the conjugates to fall on the predicted and more accessible transportation region of phloem. Moreover, the influence of this movement on phloem is inspected by the Kleier model and Carrier-mediated theory. To verify this strategy, a series of N-alkylated phenazine-1-carboxylic acid-glycine compounds (PCA-Gly) were designed and synthesized. The results related to the castor bean seeds (R. communis L.) indicated that all the target compounds (4a–4f) had phloem mobility. The capacity for phloem mobility shows that N-alkylated glycine containing small substituents can significantly improve PCA phloem mobility, such as 4c(i-C3H7-N) > 4a(CH3-N) ≈ 4b(C2H5-N) > 4d (t-C4H9-N) > PCA-Gly > 4e(C6H5-N) > 4f(CH2COOH-N), with an oil–water partition coefficient between 1.2~2.5. In particular, compounds 4a(CH3-N), 4b(C2H5-N), and 4c(i-C3H7-N) present better phloem mobility, with the average concentrations in phloem sap of 14.62 μΜ, 13.98 μΜ, and 17.63 μΜ in the first 5 h, which are 8 to 10 times higher than PCA-Gly (1.71 μΜ). The results reveal that the Kleier model and Carrier-mediated theory play a guiding role in the design of phloem-mobile pesticides. However, the single Kleier model or Carrier-mediated theory are not entirely accurate. Still, there is a synergism between Carrier-mediated theory and the Kleier model for promoting the phloem transport of exogenous compounds. Therefore, we suggest the introduction of endogenous plant compounds as a promoiety to improve the phloem mobility of pesticides through Carrier-mediated theory. It is necessary to consider the improvement of physicochemical properties according to the Kleier model, which can contribute to a scientific theory for developing phloem-mobile pesticides. 相似文献
69.
Bingchao Qi Liqiang Song Lang Hu Dong Guo Gaotong Ren Tingwei Peng Mingchuan Liu Yexian Fang Chunyu Li Mingming Zhang Yan Li 《Experimental & molecular medicine》2022,54(7):946
Myocardial infarction (MI) is the leading cause of premature death among adults. Cardiomyocyte death and dysfunction of the remaining viable cardiomyocytes are the main pathological factors of heart failure after MI. Mitochondrial complexes are emerging as critical mediators for the regulation of cardiomyocyte function. However, the precise roles of mitochondrial complex subunits in heart failure after MI remain unclear. Here, we show that NADH:ubiquinone oxidoreductase core subunit S1 (Ndufs1) expression is decreased in the hearts of heart failure patients and mice with myocardial infarction. Furthermore, we found that cardiac-specific Ndufs1 overexpression alleviates cardiac dysfunction and myocardial fibrosis in the healing phase of MI. Our results demonstrated that Ndufs1 overexpression alleviates MI/hypoxia-induced ROS production and ROS-related apoptosis. Moreover, upregulation of Ndufs1 expression improved the reduced activity of complex I and impaired mitochondrial respiratory function caused by MI/hypoxia. Given that mitochondrial function and cardiomyocyte apoptosis are closely related to heart failure after MI, the results of this study suggest that targeting Ndufs1 may be a potential therapeutic strategy to improve cardiac function in patients with heart failure.Subject terms: Heart failure, Myocardial infarction, Myocardial infarction 相似文献
70.
Wei Zhu Fengming Wu Jindie Hu Wenjing Wang Jifeng Zhang Guoqing Guo 《Molecules (Basel, Switzerland)》2022,27(11)
Chlorogenic acid (CGA), an important metabolite in natural plant medicines such as honeysuckle and eucommia, has been shown to have potent antinociceptive effects. Nevertheless, the mechanism by which CGA relieves chronic pain remains unclear. α-amino-3-hydroxy-5-methyl-4-isooxazolpropionic acid receptor (AMPAR) is a major ionotropic glutamate receptor that mediates rapid excitatory synaptic transmission and its glutamate ionotropic receptor AMPA type subunit 1 (GluA1) plays a key role in nociceptive transmission. In this study, we used Western blot, surface plasmon resonance (SPR) assay, and the molecular simulation technologies to investigate the mechanism of interaction between CGA and AMPAR to relieve chronic pain. Our results indicate that the protein expression level of GluA1 showed a dependent decrease as the concentration of CGA increased (0, 50, 100, and 200 μM). The SPR assay demonstrates that CGA can directly bind to GluA1 (KD = 496 μM). Furthermore, CGA forms a stable binding interaction with GluA1, which is validated by molecular dynamics (MD) simulation. The binding free energy between CGA and GluA1 is −39.803 ± 14.772 kJ/mol, where van der Waals interaction and electrostatic interaction are the major contributors to the GluA1–CGA binding, and the key residues are identified (Val-32, Glu-33, Ala-36, Glu-37, Leu-48), which play a crucial role in the binding interaction. This study first reveals the structural basis of the stable interaction between CGA and GluA1 to form a binding complex for the relief of chronic pain. The research provides the structural basis to understand the treatment of chronic pain and is valuable to the design of novel drug molecules in the future. 相似文献