首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   23篇
化学   335篇
晶体学   8篇
力学   27篇
综合类   1篇
数学   73篇
物理学   98篇
  2023年   5篇
  2022年   15篇
  2021年   18篇
  2020年   20篇
  2019年   14篇
  2018年   17篇
  2017年   18篇
  2016年   23篇
  2015年   17篇
  2014年   20篇
  2013年   54篇
  2012年   39篇
  2011年   34篇
  2010年   28篇
  2009年   23篇
  2008年   31篇
  2007年   31篇
  2006年   28篇
  2005年   21篇
  2004年   10篇
  2003年   15篇
  2002年   11篇
  2001年   9篇
  2000年   11篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有542条查询结果,搜索用时 15 毫秒
531.
The synthesis and isolation are reported of a range of terminal aryl- and heteroaryl-butadiynes (ArCC-CCH) 4a-h from 2-methyl-6-(aryl/heteroaryl)hexa-3,5-diyn-2-ol precursors. The stability of 4a-h in solution is concentration dependent: many of the derivatives can be stored as dilute solutions for several days or even weeks. The X-ray crystal structures have been obtained for five ArCC-CCH derivatives [Ar = 2-(9-fluorenonyl), 4-biphenyl, 2-pyridyl, 4-pyridyl, and 2-pyrazyl].  相似文献   
532.
Co(II), Ni(II) and Cu(II) nitrate complexes with btmpp, namely ([Co(btmpp)(H2O)2(NO3)]NO3 (1), [Ni(btmpp)(H2O)(NO3)]NO3 (2) and [Cu(btmpp)(MeOH)(NO3)]NO3 (3), where btmpp = 2,6-bis(3,4,5-trimethyl-N-pyrazolyl)pyridine), have been synthesized and characterized by physicochemical and spectroscopic methods. The crystal structure of complex 1 has been determined by single crystal diffraction at 100K. In all the complexes, btmpp is coordinated in a tridentate mode through its nitrogen atoms. One of the nitrates in complex 1 is terminally bonded to the metal center through the oxygen atom, whereas the other one is out of the coordination sphere. The Co(II) atom in complex 1 is hexa-coordinated with a CoN3O3 distorted octahedral environment. Decomposition of three complexes was analyzed thermogravimetrically. All three complexes decompose similar to explosive material.  相似文献   
533.
Quaternary ammonium compounds are produced worldwide in hundreds of millions of pound volume annually for a plethora of end‐uses from fabric‐care formulations to asphalt emulsifiers, typically from nongreen alkylating reagents. The kinetics of a reaction employing dimethyl carbonate (DMC) as a green alkylating agent was investigated using three trialkylamines (tributylamine, trihexylamine, and trioctylamine) at several temperatures. Arrhenius and Eyring analysis of the data showed that values of Ea (79 kJ/mol), ΔH? (75 kJ/mol), and ΔS? (220 J/(mol K)) were the same for all three amine reactants, consistent with a report that Ea is independent of alkyl chain length when the chain length is greater than three carbons. Although rates are significantly slower with DMC than with other alkylating reagents, the resulting methyl carbonate anion has advantages for clean anion metathesis, which is important for some applications, especially those involving ionic liquids. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 221–225, 2010  相似文献   
534.
A new cadmium (II) complex, [Cd(bdmpp)(SeCN)2(H2O)] (1) (where bdmpp = 2,6-bis(3,5-dimethyl-N-pyrazolyl)pyridine), has been synthesized and characterized by elemental and spectral (IR, 1H-NMR and 13C-NMR, UV-Vis) analyses, differential scanning calorimetry, and single crystal X-ray diffraction studies. X-ray analysis showed that the structure was crystallized in the monoclinic space group Cc with a = 9.031(2), b = 13.884(3), c = 16.910(3) Å, and Z = 4. The geometry around the cadmium atom is distorted octahedral with a CdN3Se2O setup. The N atoms of the SeCN are engaged in two strong intermolecular H-bonding interactions forming a 3D supramolecular polymeric network. The geometry and vibrational frequencies of complex 1 computed with the DFT methods (BLYP, B3LYP, B3PW91, MPW1PW91) are in better agreement with experiment than those obtained with the ab-initio method except for the bond angles. The molecular orbital diagram has been also calculated and visualized at the B3LYP/LanL2DZ level of theory.   相似文献   
535.
Hybrid photovoltaic structures based on transparent conductive SnO2 and electrically conductive polypyrrole (PPy) were prepared. Nanocrystalline SnO2 is considered an n-type barrier and window layer on p-type PPy layer in cell structures. The surface morphology and thickness of the layers were studied using scanning electron microscopy. The optical absorbance data showed an increase of absorbance in contrast with PPy and SnO2. There was a red shift in absorbance wavelengths and a decrease in band gaps for the prepared PV structures. To investigate the electrical properties of the obtained structures, current-voltage characteristic was measured. The best structure showed an open-circuit voltage of 0.170?V, a short-circuit current density of 0.017?mA/cm2, a fill factor of 0.36 and power conversion efficiency of 0.076.  相似文献   
536.
We report the development of a pattern-recognition scheme for the off-lattice self-learning kinetic Monte Carlo (KMC) method, one that is simple and flexible enough that it can be applied to all types of surfaces. In this scheme, to uniquely identify the local environment and associated processes involving three-dimensional (3D) motion of an atom or atoms, space around a central atom is divided into 3D rectangular boxes. The dimensions and the number of 3D boxes are determined by the accuracy with which a process needs to be identified and a process is described as the central atom moving to a neighboring vacant box accompanied by the motion of any other atom or atoms in its surrounding boxes. As a test of this method to we apply it to examine the decay of 3D Cu islands on the Cu(100) and to the surface diffusion of a Cu monomer and a dimer on Cu(111) and compare the results and computational efficiency to those available in the literature.  相似文献   
537.
Using density functional theory (DFT) we report results for the electronic structure and vibrational dynamics of hydrogenated silicon carbide (001) (3 × 2) surfaces with various levels of hydrogenation. These results were obtained using density functional theory with a generalized gradient exchange correlation function. The calculations reveal that metallization can be achieved via hydrogen atoms occupying the second silicon layer. Further increase of hydrogen occupation on the second silicon layer sites results in a loss of this metallization. For the former scenario, where metallization occurs, we found a new vibrational mode at 1870 cm? 1, which is distinct from the mode associated with hydrogen atoms on the first layer. Furthermore, we found the diffusion barrier for a hydrogen atom to move from the second to the third silicon layer to be 258 meV.  相似文献   
538.
Silicene-the silicon-based counterpart of graphene-has a two dimensional structure that is responsible for the variety of potentially useful chemical and physical properties. The existence of silicene has been achieved recently owing to experiments involving epitaxial growth of silicon as stripes on Ag(001), ribbons on Ag(110), and sheets on Ag(111). The nano-ribbons observed on Ag(110) were found-by both high definition experimental scanning tunneling microscopy images and density functional theory calculations-to consist of an arched honeycomb structure. Angle resolved photo-emission experiments on these silicene nano-ribbons on Ag(110), along the direction of the ribbons, showed a band structure which is analogous to the Dirac cones of graphene. Unlike silicon surfaces, which are highly reactive to oxygen, the silicene nano-ribbons were found to be resistant to oxygen reactivity.On the theoretical side, recent extensive efforts have been deployed to understand the properties of standalone silicene sheets and nano-ribbons using both tight-binding and density functional theory calculations. Unlike graphene it is demonstrated that silicene sheets are stable only if a small buckling (0.44 Å) is present. The electronic properties of silicene nano-ribbons and silicene sheets were found to resemble those of graphene.Although this is a fairly new avenue, the already obtained outcome from these important first steps in understanding silicene showed promising features that could give a new future to silicon in the electronics industry, thus opening a promising route toward wide-range applications. In this review, we plan to introduce silicene by presenting the available experimental and theoretical studies performed to date, and suggest future directions to be explored to make the synthesis of silicene a viable one.  相似文献   
539.
540.
Electron–phonon mediated superconductivity is deeply investigated in two boron based monolayer materials, namely, B 3 S $B_{3}S$ , a metal exhibiting the ability to superconduct, and a new metal, B 3 S e $B_{3}Se$ , presenting perfect kinetic stability. Calculations based on density functional perturbation theory combined with the maximally localized Wannier function also reveal that both materials exhibit anisotropic planar hexagonal structure like graphene. The key parameters involved in the superconductor behavior are all calculated. The electronic density in the Fermi surface is given to provide the environment for enhanced electron–phonon coupling. The longitudinal and transverse vibration modes of optical phonons mainly contribute to the electron–phonon coupling strength. Furthermore, the binding energy between the bosonic Cooper pair superfluid is quantified and determined. The critical temperature for the two materials is 20 and 10.5 K, respectively. The results obtained show the potential use of such materials for superconducting applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号