首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   9篇
化学   119篇
晶体学   4篇
力学   2篇
综合类   1篇
数学   17篇
物理学   26篇
  2023年   1篇
  2022年   5篇
  2021年   9篇
  2020年   6篇
  2019年   4篇
  2018年   4篇
  2017年   10篇
  2016年   8篇
  2015年   8篇
  2014年   11篇
  2013年   23篇
  2012年   12篇
  2011年   8篇
  2010年   8篇
  2009年   5篇
  2008年   7篇
  2007年   4篇
  2006年   8篇
  2005年   6篇
  2003年   4篇
  2002年   4篇
  2000年   1篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1977年   2篇
排序方式: 共有169条查询结果,搜索用时 734 毫秒
71.
In this work, the oil palm empty fruit bunch (EFB) fiber was used as a source of lignocellulosic filler to fabricate a novel type of cost effective biodegradable composite, based on the aliphatic aromatic co-polyester poly(butylene adipate-co-terephtalate) PBAT (Ecoflex?), as a fully biodegradable thermoplastic polymer matrix. The aim of this research was to improve the new biocomposites' performance by chemical modification using succinic anhydride (SAH) as a coupling agent in the presence and absence of dicumyl peroxide (DCP) and benzoyl peroxide (BPO) as initiators. For the composite preparation, several blends were prepared with varying ratios of filler and matrix using the melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 (wt %) and characterized. The effects of fiber loading and coupling agent loading on the thermal properties of biodegradable polymer composites were evaluated using thermal gravimetric analysis (TGA). Scanning Electron Microscopy (SEM) was used for morphological studies. The chemical structure of the new biocomposites was also analyzed using the Fourier Transform Infrared (FTIR) spectroscopy technique. The PBAT biocomposite reinforced with 40 (wt %) of EFB fiber showed the best mechanical properties compared to the other PBAT/EFB fiber biocomposites. Biocomposite treatment with 4 (wt %) succinic anhydride (SAH) and 1 (wt %) dicumyl peroxide (DCP) improved both tensile and flexural strength as well as tensile and flexural modulus. The FTIR analyses proved the mechanical test results by presenting the evidence of successful esterification using SAH/DCP in the biocomposites' spectra. The SEM micrograph of the tensile fractured surfaces showed the improvement of fiber-matrix adhesion after using SAH. The TGA results showed that chemical modification using SAH/DCP improved the thermal stability of the PBAT/EFB biocomposite.  相似文献   
72.
Bio-photovoltaic cells (BPVs) are a new photo-bio-electrochemical technology for harnessing solar energy using the photosynthetic activity of autotrophic organisms. Currently power outputs from BPVs are generally low and suffer from low efficiencies. However, a better understanding of the electrochemical interactions between the microbes and conductive materials will be likely to lead to increased power yields. In the current study, the fresh-water, filamentous cyanobacterium Pseudanabaena limnetica (also known as Oscillatoria limnetica) was investigated for exoelectrogenic activity. Biofilms of P. limnetica showed a significant photo response during light-dark cycling in BPVs under mediatorless conditions. A multi-channel BPV device was developed to compare quantitatively the performance of photosynthetic biofilms of this species using a variety of different anodic conductive materials: indium tin oxide-coated polyethylene terephthalate (ITO), stainless steel (SS), glass coated with a conductive polymer (PANI), and carbon paper (CP). Although biofilm growth rates were generally comparable on all materials tested, the amplitude of the photo response and achievable maximum power outputs were significantly different. ITO and SS demonstrated the largest photo responses, whereas CP showed the lowest power outputs under both light and dark conditions. Furthermore, differences in the ratios of light?:?dark power outputs indicated that the electrochemical interactions between photosynthetic microbes and the anode may differ under light and dark conditions depending on the anodic material used. Comparisons between BPV performances and material characteristics revealed that surface roughness and surface energy, particularly the ratio of non-polar to polar interactions (the CQ ratio), may be more important than available surface area in determining biocompatibility and maximum power outputs in microbial electrochemical systems. Notably, CP was readily outperformed by all other conductive materials tested, indicating that carbon may not be an optimal substrate for microbial fuel cell operation.  相似文献   
73.
The design, fabrication, and characterization of microfluidic channel flow devices for in situ simultaneous hydrodynamic electrochemical ESR is reported. The microelectrochemical reactors consist of gold film electrodes situated within rectangular ducts of height 350 microm and widths in the range 500-2000 microm. The small dimensions of the channels result in minimal dielectric loss when centralized within a cylindrical TE011 resonant cavity, leading to a high level of sensitivity. This is demonstrated by using the one-electron oxidation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in acetonitrile as a model system, wherein the ESR spectra obtained for the corresponding stable radical cation are of a high signal-to-noise ratio. Signal intensity is measured as a function of flow rate for this system, and the behavior is validated by means of 3-dimensional numerical modeling of the hydrodynamic flow profile.  相似文献   
74.
The design and synthesis of a phthalocyanine – Gd‐DOTA conjugate is presented to open the way to novel molecular theranostics, combining the properties of MRI contrast imaging with photodynamic therapy. The rational design of the conjugate integrates isomeric purity of the phthalocyanine core substitution, suitable biocompatibility with the use of polyoxo water‐solubilizing substituents, and a convergent synthetic strategy ended by the use of click chemistry to graft the Gd‐DOTA moiety to the phthalocyanine. Photophysical and photochemical properties, contrast imaging experiments and preliminary in vitro investigations proved that such a combination is relevant and lead to a new type of potential theranostic agent.  相似文献   
75.
Plasticized PLA-based nanocomposites were prepared by melt blending of the matrix with 5 mass% of epoxidized palm oils (EPO) and different amount of graphene nanoplatelets (xGnP). Plasticized PLA (p-PLA) reinforced with 0.3 mass% xGnP resulted in an increase of up to 26.5 and 60.6 % in the tensile strength and elongation at break of the nanocomposites, respectively. Thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) were performed to study the thermal behavior of the prepared nanocomposites. p-PLA reinforced with xGnP shows that increasing the xGnP content triggers a substantial increase in thermal stability. Crystallinity of the nanocomposites as well as cold crystallization and melting temperature did not show any significant changes upon addition of xGnP. However, there is a significant decrease of glass transition temperature up to 0.3 mass% of xGnP incorporation.  相似文献   
76.
In the presence of BF3, a series of symmetrical and unsymmetrical ethers reacted with epichlorohydrin and 2‐[(benzyloxy)methyl]oxirane, two terminal epoxides, to afford 1‐alkoxy‐3‐chloropropan‐2‐ol and 1‐alkoxy‐3‐(benzyloxy)propan‐2‐ol. The cleavage of unsymmetrical ethers occurred via an SN2 or SN1 mechanism. Secondary epoxides did not give similar ring‐opening products.  相似文献   
77.
Herein, we report the third generation of fluorescent probes (arylphosphonic acids) to target calcifications, particularly hydroxyapatite (HAP). In this study, we use highly conjugated porphyrin-based arylphosphonic acids and their diesters, namely 5,10,15,20-tetrakis[m-(diethoxyphosphoryl)phenyl]porphyrin ( m -H8TPPA-OEt8 ) and 5,10,15,20-tetrakis [m-phenylphosphonic acid]porphyrin ( m -H8TPPA ), in comparison with their positional isomers 5,10,15,20-tetrakis[p-(diisopropoxyphosphoryl)phenyl]porphyrin ( p -H8TPPA-iPr8 ) and 5,10,15,20-tetrakis [p-phenylphosphonic acid]porphyrin ( p -H8TPPA ), which have phosphonic acid units bonded to sp2 carbon atoms of the fluorescent core. The conjugation of the fluorescent core is thus extended to the (HAP) through sp2-bonded −PO3H2 units, which generates increased fluorescence upon HAP binding. The resulting fluorescent probes are highly sensitive towards the HAP in rat bone sections. The designed probes are readily taken up by cells. Due to the lower reported toxicity of ( p -H8TPPA ), these probes could find applications in monitoring bone resorption or adsorption, or imaging vascular or soft tissue calcifications for breast cancer diagnosis etc.  相似文献   
78.
Fatty methylydrazides (FMHs) have been successfully synthesized from palm oil. Glycerol was produced as a by-product. The synthesis was carried out by reflux palm oil with methylhydrazine in hexane. FMHs have been characterized using elemental analysis, Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance technique. The results showed that a 6:1 molar ratio of palm oil to methylhydrazine, a round 78 % maximum conversion of palm oil into FMHs and a 10 h reaction time are the optimum reaction conditions.  相似文献   
79.
In this paper, three new copper (II) complexes, [Cu(4‐mphen)(tyr)(H2O)]ClO4 (1) , [Cu(5‐mphen)(tyr)(H2O)]ClO4·1.5H2O (2) and [Cu (tmphen)(tyr)(NO3)]0.5H2O (3) (4‐mphen: 4‐methyl‐1,10‐phenanthroline, 5‐mphen: 5‐methyl‐1,10‐phenanthroline, tmphen: 3,4,7,8‐tetramethyl‐1,10‐phenanthroline and tyr: L‐tyrosine), were synthesized and characterized using elemental analyses, FT‐IR, ESI‐MS, cyclic voltammetry and single‐crystal X‐ray diffraction. It was found that the complexes adopt a distorted five‐coordinate square pyramidal geometry. The interaction of the three complexes with calf thymus DNA was also investigated using UV–visible absorption spectra, ethidium bromide and Hoechst 33258 displacement assay and thermal denaturation. The DNA cleavage activity of the complexes, monitored using gel electrophoresis, showed significant damage of the pUC19 plasmid DNA. Binding activity of bovine serum albumin (BSA) reveals that these complexes can strongly quench the fluorescence of BSA through a static quenching mechanism. The results suggested that interaction of the complexes with DNA occurred through a partial intercalation into the minor grooves of DNA. In addition, interaction of the complexes with bovine serum albumin quenched the fluorescence emission of the tryptophan residues of the protein binding constants and thermodynamic parameters were obtained from the fluorescence quenching experiments at different temperatures. Free radical scavenging activities of the complexes were determined by various in vitro assays such as 1,1‐diphenyl‐2‐picryl‐hydrazyl free radicals (DPPH˙) and H2O2 scavenging methods. In addition, the cytotoxicity of these complexes in vitro on tumor cell lines (Caco‐2 and MCF‐7) was examined by XTT and showed better antitumor effect on the tested cells. ROS (reactive oxygen species) and comet experiments are consistent with each other and these complexes lead to DNA damage via the production of ROS. The effect of the hydrophobic properties of the synthesized complexes on DNA and BSA binding activities were discussed.  相似文献   
80.
Three novel water‐soluble copper(II) complexes – {[Cu(phen)(trp)]ClO4·3H2O}n ( 1 ), {[Cu(4‐mphen)(trp)]ClO4·3H2O}n ( 2 ) and [[Cu(dmphen)(trp)(MeOH)][Cu(dmphen)(trp)(NO3)]]NO3 ( 3 ) (phen: 1,10‐phenanthroline; 4‐mphen: 4‐methyl‐1,10‐phenanthroline; dmphen: 4,7‐dimethyl‐1,10‐phenanthroline; trp: l ‐tryptophan) – have been synthesized and characterized using various techniques. Complexes 1 and 2 are isostructural, and exist as one‐dimensional coordination polymers. Complex 3 consists of two discrete copper(II) complexes containing [Cu(trp)(dmphen)(MeOH)]+, [Cu(trp)(dmphen)(NO3)] and one nitrate anion. The binding interaction of the complexes with calf thymus DNA (CT‐DNA) was investigated using thermal denaturation, electronic absorption and emission spectroscopic methods, revealing that the complexes could interact with CT‐DNA via a moderate intercalation mode. The binding activity of the complexes to CT‐DNA follows the order: 3  >  2 > 1 . The pUC19 DNA cleavage activity of the complexes was investigated in the absence and presence of external agents using the agarose gel electrophoresis method. Especially, in the presence of H2O2 as an activator, the pUC19 DNA cleavage abilities of the complexes are clearly enhanced at low concentration. Addition of hydroxyl radical scavenger dimethylsulfoxide shows a marked inhibition of the pUC19 DNA cleavage activity of the complexes. In vitro cytotoxic effect of the complexes was examined on human tumor cell lines (Caco‐2, A549 and MCF‐7) and healthy cells (BEAS‐2B). The potent cytotoxic effect of complex 3 , with IC50 values of 1.04, 1.16 and 1.72 μM, respectively, is greater relative to clinically used cisplatin (IC50 = 22.70, 31.1 and 22.2 μM) against the Caco‐2, A549 and MCF‐7 cell lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号