首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9229篇
  免费   1225篇
  国内免费   741篇
化学   6752篇
晶体学   122篇
力学   412篇
综合类   51篇
数学   842篇
物理学   3016篇
  2024年   26篇
  2023年   177篇
  2022年   264篇
  2021年   309篇
  2020年   352篇
  2019年   322篇
  2018年   254篇
  2017年   229篇
  2016年   437篇
  2015年   377篇
  2014年   453篇
  2013年   658篇
  2012年   840篇
  2011年   848篇
  2010年   509篇
  2009年   513篇
  2008年   595篇
  2007年   574篇
  2006年   490篇
  2005年   455篇
  2004年   300篇
  2003年   206篇
  2002年   226篇
  2001年   190篇
  2000年   181篇
  1999年   157篇
  1998年   145篇
  1997年   112篇
  1996年   108篇
  1995年   136篇
  1994年   119篇
  1993年   90篇
  1992年   79篇
  1991年   70篇
  1990年   67篇
  1989年   34篇
  1988年   45篇
  1987年   35篇
  1986年   35篇
  1985年   31篇
  1984年   23篇
  1983年   9篇
  1982年   20篇
  1981年   14篇
  1980年   7篇
  1979年   7篇
  1978年   10篇
  1977年   8篇
  1976年   7篇
  1975年   7篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
61.
刘凌  苏燕辰  刘崇新 《中国物理》2007,16(7):1897-1900
This paper reports a new reverse butterfly-shaped chaotic attractor and its experimental confirmation. Some basic dynamical properties, and chaotic behaviours of this new reverse butterfly attractor are studied. Simulation results support brief theoretical derivations. Furthermore, the system is experimentally confirmed by a simple electronic circuit.  相似文献   
62.
We present the study of angular selectivity for holographic multiplexing based on random phase encoding by a ground glass. The rotational selectivity of the volume hologram is calculated theoretically and coincides with the experimental measurement. By controlling the parameters including rotational center, effective numerical aperture of both volume hologram and the ground glass, we can obtain different rotational selectivity applied to random phase encoding in volume holographic storage.  相似文献   
63.
We have discussed the optical and laser properties of different laser glass types. According to the properties of the gain and the B integral in the high-power laser amplifier chain, an optimal configuration is pointed out to improve the output capability at short pulses based on reducing nonlinear refractive index n2. In this way, high gain glasses and low n2 glasses are used in different amplifier stages simultaneously. The simulated results show that on the condition that the maximal output energies of both the configurations are same at 3 and 5 ns, the maximal output capability growth ratio of 30.48% () and 42.24% () for the optimal configuration can be obtained at 1 ns, respectively.  相似文献   
64.
We describe the formation of a narrow beam for intensity-modulated electromagnetic radiation propagating through highly scattering materials. We propose to use this beam to reconstruct images, similar to X-ray back-projection techniques. For sufficiently high modulation frequency, the photon density wave is primarily carried by photons that suffer small or no large-angle scattering, which gives rise to the beam’s narrow divergence. The beam-narrowing concept is supported by large-scale numerical simulations to examine the quality of the imaging.  相似文献   
65.
We consider the application of the differential absorption imaging technique in the soft X-ray region. The surface-density maps of test samples containing bromine, resulting from the application of the differential absorption imaging technique, are presented. Images of the samples were obtained in an X-ray monochromatic projection imaging scheme based on a spherically bent crystal using line emission close to the $L_2$ edge of bromine from a microplasma produced by focusing a nanosecond laser on the surface of an aluminum target.  相似文献   
66.
Obtaining structural information of uranyl species at an atomic/molecular scale is a critical step to control and predict their physical and chemical properties. To obtain such information, experimental and theoretical L3‐edge X‐ray absorption near‐edge structure (XANES) spectra of uranium were studied systematically for uranyl complexes. It was demonstrated that the bond lengths (R) in the uranyl species and relative energy positions (ΔE) of the XANES were determined as follows: ΔE1 = 168.3/R(U—Oax)2 ? 38.5 (for the axial plane) and ΔE2 = 428.4/R(U—Oeq)2 ? 37.1 (for the equatorial plane). These formulae could be used to directly extract the distances between the uranium absorber and oxygen ligand atoms in the axial and equatorial planes of uranyl ions based on the U L3‐edge XANES experimental data. In addition, the relative weights were estimated for each configuration derived from the water molecule and nitrate ligand based on the obtained average equatorial coordination bond lengths in a series of uranyl nitrate complexes with progressively varied nitrate concentrations. Results obtained from XANES analysis were identical to that from extended X‐ray absorption fine‐structure (EXAFS) analysis. XANES analysis is applicable to ubiquitous uranyl–ligand complexes, such as the uranyl–carbonate complex. Most importantly, the XANES research method could be extended to low‐concentration uranyl systems, as indicated by the results of the uranyl–amidoximate complex (~40 p.p.m. uranium). Quantitative XANES analysis, a reliable and straightforward method, provides a simplified approach applied to the structural chemistry of actinides.  相似文献   
67.
朱夙 《物理通报》2007,(8):59-59
电表的量程选择合适,能减小测量值的误差.中学常用的电压表(J0408)、电流表(J0407)准确度均为2.5级.现根据电表的准确度来确定实验误差范围.  相似文献   
68.
黄磊  苏显渝 《光学学报》2007,27(4):09-615
介绍双螺旋叠栅条纹检测光束准直性的基本原理,进一步就双螺旋叠栅条纹的特征参量与被测光束发散角(即光束准直精度)的关系进行分析和推导。在分析双螺旋叠栅条纹进行时,首先采用频域低通滤波提取纯叠栅条纹,然后提取纯叠栅条纹的特征参量。提出两种特征参量的提取方法,一种依次进行傅里叶变换计算相位信息的傅里叶变换方法,另一种是受传统时间相移算法启发而提出的空间相移算法,讨论了在两种方法中极坐标的重采样问题和相应的计算公式,并进行了计算机模拟。结果表明,傅里叶变换方法和空间相移算法实质都是获取叠栅条纹全场趋势的平均值,使最终光束发散角的检测具有很高的精度,对自成像条纹周期的检测误差在±2.8‰以内。  相似文献   
69.
小波变换轮廓术的测量范围研究   总被引:2,自引:1,他引:2  
利用小波“脊”处的小波系数来提取变形条纹中的相位信息可以在很大程度上抑制条纹图中有用的基频分量与零频和其它谐波频率分量的混叠,弥补了傅里叶变换轮廓术的不足。从离散信号频域分析角度,推导了变形条纹小波变换的频谱描述形式,讨论了其测量范围,包括结构条件和抽样条件。结果表明,只有在无周期内瞬时频谱混叠,即任意位置处物体瞬时高度变化满足h/xx=b<1/3条件时,和不存在抽样引起的周期间瞬时频谱混叠的抽样条件下(即一个周期内的抽样点数m≥4时),小波变换轮廓术才能正确恢复被测物体的三维面型。计算机模拟和实验验证了该结论。  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号