首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   533篇
  免费   24篇
  国内免费   2篇
化学   497篇
晶体学   3篇
力学   5篇
数学   21篇
物理学   33篇
  2024年   2篇
  2023年   5篇
  2022年   35篇
  2021年   32篇
  2020年   26篇
  2019年   41篇
  2018年   32篇
  2017年   21篇
  2016年   34篇
  2015年   23篇
  2014年   31篇
  2013年   28篇
  2012年   44篇
  2011年   40篇
  2010年   30篇
  2009年   21篇
  2008年   21篇
  2007年   26篇
  2006年   14篇
  2005年   19篇
  2004年   7篇
  2003年   6篇
  2002年   7篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
排序方式: 共有559条查询结果,搜索用时 15 毫秒
21.
8-Iodo-1,2-dicarba-closo-dodecaborane (7) was prepared in three steps starting from decaborane-14 with 20% overall yield. In the presence of nucleophiles, compound 7 undergoes selective removal of the boron vertex in the position para to the iodine substituent to form the anionic nido-carborane 1-iodo-7,8-dicarba-nido-undecaborate. Capping of the corresponding dicarbollide dianion with BI(3) led to formation of the new carborane, 3,10-diiodo-1,2-dicarba-closo-dodecaborane (15). The same dicarbollide dianion reacts with cobalt and nickel acetylacetonates in anhydrous tetrahydrofuran to form the corresponding bis(dicarbollide) complexes with excellent yields. All compounds were characterized by multinuclear NMR and high-resolution mass spectroscopy. Structures of 2-iododecaborane (2), 8-iodo-1,2-dicarba-closo-dodecaborane (7), 1-ethoxycarbonyl-8-iodo-1,2-dicarba-closo-dodecaborane (10), cesium 1-iodo-7,8-dicarba-nido-undecaborate (13), 3,10-diiodo-1,2-dicarba-closo-dodecaborane (15), and cesium 3,3'-commo-(10-iodo-1,2-dicarba-3-cobalta-closo-dodecaborane)-(10'-iodo-1',2'-dicarba-3'-cobalta-closo-dodecaborane) (16) were established by X-ray analysis of single crystals.  相似文献   
22.
14 Single‐ and multi‐walled carbon nanotubes from different sources were characterized in detail, and the characteristics obtained were carefully analyzed. The carbon material with the highest capacitance, and also other superior properties (“Taunit‐M” from “NanoTechCenter”, Russia), was chosen for further modification and fabrication of buckypaper based electrodes. These electrodes were biomodified with plant and fungal laccases, as well as fungal bilirubin oxidase. The designed biocathodes were investigated in simple buffers and also in a complex physiological fluid (human serum). Biocathodes based on immobilized fungal laccase were bioelectrocatalytically inactive in chloride containing media at neutral pH. In spite of the quite high current densities realized using biodevices based on plant laccase and fungal bilirubin oxidase, the limited thermal stability of the enzymes renders the biocathodes inadequate for practical applications in implanted situations.  相似文献   
23.
The design of new solid-state proton-conducting materials is a great challenge for chemistry and materials science. Herein, a new anionic porphyrinylphosphonate-based MOF ( IPCE-1Ni ), which involves dimethylammonium (DMA) cations for charge compensation, is reported. As a result of its unique structure, IPCE-1Ni exhibits one of the highest value of the proton conductivity among reported proton-conducting MOF materials based on porphyrins (1.55×10−3 S cm−1 at 75 °C and 80 % relative humidity).  相似文献   
24.
Foreword     
Structural Chemistry - Milestones of historical evolution of the Chemistry Department of the Lomonosov Moscow State University, which was formally separated from the physical-mathematical faculty...  相似文献   
25.
Slightly cross-linked polyelectrolytes absorb oppositely charged surfactants in aqueous media. Transfer of amphiphilic ions from solution into the swollen network proceeds as a frontal heterogeneous cooperative reaction causing a collapse of the original polyelectrolyte gel. Small and wide angle X-ray diffraction data show that electrostatic complex formed as a result of the reaction consists of lamellar type surfactant micelles embedded in a polyelectrolyte network. It is also shown that such complexes contain equimolar amount of surfactant ions and ionized polyelectrolyte units paired with amphiphil head groups. In other words a charged network is not able to bind surplus oppositely charged surfactant ions. However, it is still able to solubilize a substantial amount of a nonionized surfactant. Chemical structure of surfactants strongly affect internal structure of lamellae and stability of the complexes.  相似文献   
26.
A novel approach for the structural analysis of heteroleptic triple‐decker (porphyrinato)(phthalocyaninato) lanthanides(III) in solutions is developed. The developed approach consists in molecular mechanics (MM+) optimization of the geometry of the complex taking into account the lanthanide‐induced shift (LIS) datasets. LISs of the resonance peaks in 1H NMR spectra of a series of symmetric complexes [An4P]Ln[(15C5)4Pc]Ln[An4P], where An4P2? is 5,10,15,20‐tetrakis(4‐methoxyphenyl)porphyrinato‐dianion, [(15C5)4Pc]2? is 2,3,9,10,16,17,24,25‐tetrakis(15‐crown‐5)phthalocyaninato‐dianion and Ln = La, Ce, Pr, Nd, Sm, Eu, are analyzed. Analysis of LISs showed two sets of protons in the molecule with opposite signs of shift. Two‐nuclei analysis of LISs testifies isostructurality of the whole series of investigated complexes in solution despite contraction of the lanthanide ions. Model‐free separation of contact and dipolar contributions of LISs was performed with one‐nucleus technique and did not show changes in contact and dipolar terms within the investigated series. MM+ optimization of the molecular structure allowed the interpretation of features of LIS for each particular group of protons. Parameterization of MM + ‐optimized model of molecule with values of structure‐dependent dipolar contributions of LIS allows the development of the precise structural model of the triple‐decker complex in solution. This approach allows the determination of the geometry and structure of the sandwich macrocyclic tetrapyrrolic complexes together with conformational analysis of flexible peripheral substituents in solutions. The developed method can be applied with minor modifications for the determination of structural parameters of other types of lanthanides(III) complexes with tetrapyrrolic ligands and also supramolecular systems based on them. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
27.
The treatment of 5H-1,2,3-dithiazole-5-thiones 1 in chloroform under reflux and 5H-1,2,3-dithiazol-5-ones 2 in THF at room temperature with primary aliphatic amines and benzylamine afforded 1,2,5-thiadiazole-3(2H)-thiones 3 and 1,2,5-thiadiazol-3(2H)-ones 6, respectively. The structure of dithiazolone 3f was confirmed by X-ray diffraction analysis. The reaction of dithiazolone 2e bearing an electron-donating methyl group in the 4-position gave 2-oxoacetamide 7e in high yield. The reaction of thiones 1 with secondary aliphatic amines in DMSO yielded 2-iminothioacetamides 8 in moderate yields together with elemental sulfur. Interestingly, the treatment of dithiazolones 2 with secondary amines under the same conditions afforded 2-oxoacetamides 9—the products of the hydrolysis of corresponding imino derivatives 10, which was isolated as 10b. A general mechanism was proposed for the formation of the products.  相似文献   
28.
We describe a terbium-ligand complex (TbL) for a microtiterplate assay for phosphate (P) in the 0.3-100 μmol L−1 range based on luminescence quenching. As the pH optimum is at neutral pH (7.4) the probe is quenched by both, primary (H2PO4) and secondary phosphate (HPO42−). The LOD is 110 nmol L−1. A Stern-Volmer study revealed that quenching is mostly static. Due to the ms-decay time of TbL, the first luminescence lifetime assay for phosphate could also be developed. The lifetime-based calibration plot is linear between 0.5 and 5 μmol L−1 of P. The effect of various surfactants on assay performance and a study on interferents are presented. The probe was successfully applied to determination of P in commercial plant fertilizers and validated against the molybdenum blue test. The probe is the most sensitive lanthanide-based probe for phosphate.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号