首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   18篇
  国内免费   1篇
化学   644篇
晶体学   7篇
力学   4篇
数学   16篇
物理学   57篇
  2022年   7篇
  2021年   6篇
  2020年   9篇
  2019年   11篇
  2018年   5篇
  2017年   10篇
  2016年   9篇
  2015年   7篇
  2014年   31篇
  2013年   40篇
  2012年   49篇
  2011年   56篇
  2010年   23篇
  2009年   36篇
  2008年   57篇
  2007年   46篇
  2006年   50篇
  2005年   58篇
  2004年   42篇
  2003年   38篇
  2002年   44篇
  2001年   4篇
  2000年   7篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   8篇
  1993年   7篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   4篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1974年   1篇
  1966年   1篇
  1962年   1篇
排序方式: 共有728条查询结果,搜索用时 13 毫秒
81.
Ferromagnetic and ferrimagnetic particles have been of scientific and technological interest for several decades. The study of nanometer clusters or particles is currently a developing subject. Such materials may be in a non-equilibrium or quasi-equilibrium phase; different properties as compared to the bulk and indeed even new physical phenomena may be expected. Some ways to synthesize clusters and fine particles are described. Mössbauer spectroscopy is shown to be particularly useful for the study of nanometer particles; an outline of how it actually works is given. As an illustration, barium ferrite small particles, a material of topical interest, is considered in detail. In particular, methods of preparation, the crystal and magnetic structure, the magnetic characteristics, recently obtained Mössbauer results, and potential and realized applications are reviewed.  相似文献   
82.
We present new generalized-ensemble molecular dynamics simulation algorithms, which we refer to as the multibaric-multithermal molecular dynamics. We describe three algorithms based on (1) the Nosé thermostat and the Andersen barostat, (2) the Nosé-Poincaré thermostat and the Andersen barostat, and (3) the Gaussian thermostat and the Andersen barostat. The multibaric-multithermal simulations perform random walks widely both in the potential-energy space and in the volume space. Therefore, one can calculate isobaric-isothermal ensemble averages in wide ranges of temperature and pressure from only one simulation run. We test the effectiveness of the multibaric-multithermal algorithm by applying it to a Lennard-Jones 12-6 potential system.  相似文献   
83.

The medical radionuclide 99Mo was produced by the 100Mo(γ,n) reaction using bremsstrahlung photons generated by an electron linear accelerator. The amount of 99Mo produced was compared to that predicted by calculation using the particles and heavy ion transport code system. From the 99Mo produced, highly pure 99mTc was separated using the so-called technetium master milker, and the chemical yield of 99mTc was 83–99 %. The installation of a new complex using this method and the electron linear accelerator with the preferable specification was suggested, and a possibility to supply the demand of 99mTc was discussed and shown.

  相似文献   
84.
In radiotherapy treatment, polymer gel dosimetry can be used for verifying three-dimensional (3D) dose distributions. Gelatin is generally used as a gelling agent in the dosimeters. In this paper, another role of gelatin in a methacrylic-acid-based gel dosimeter (MAGAT) is investigated. Temperature increases due to exothermic polymerization in the irradiated gel are measured directly. Dose–R2 responses are also obtained using MRI. It is shown that no appreciable increases in either temperature or R2 are observed in MAGAT dosimeters made without gelatin, and that significant temperature and R2 increases are observed when very low gelatin concentrations are used. These results indicate that gelatin is an important enabler for radiation-induced free-radical polymerization in methacrylic-acid-based gels. When gelatin is replaced by amino acids, changes in temperature are observed, along with small changes in R2. The resulting dosimeter solutions remain transparent because the polymer does not precipitate as it does in regular MAGAT dosimeters containing gelatin. When the amino acids are replaced by acids without amino groups, no temperature or R2 changes are observed, indicating that no polymer forms. These results show that amino groups (and possibly other functional groups) on the gelatin catalyze the radiation-induced free-radical polymerization that occurs in MAGAT dosimeters.  相似文献   
85.
86.
87.
A diketone precursor of air-stable bis-2-thienyl-2,6-anthracene was prepared and quantitatively converted to the target acene by photoirradiation of the n-π absorption both in solution and as a film, in air.  相似文献   
88.
89.
Microfibrillated cellulose (MFC)-reinforced polypropylene (PP) was prepared via two engineering approaches: disintegration of the pulp by a bead mill followed by a melt-compounding process with PP (B-MFC-reinforced PP); and disintegration of the pulp mixed with PP by a twin screw extruder followed by a melt-compounding process (T-MFC-reinforced PP). The effects that the engineering process and the microfibrillation of the pulp had upon the dispersion and mechanical properties were investigated through tensile tests, rheological analysis and X-ray computed tomography. The bead-milling method enabled a uniform microfibrillation of the pulp to under 100 nm, which corresponded to a surface area of 133–146 m2/g for the pulp, found by the Brunauer–Emmett–Teller (BET) analysis. The T-MFC-reinforced PP with 30 wt% MFC content exhibited a tensile modulus of 5.3 GPa and a strength of 85 MPa, whereas the B-MFC-reinforced PP composites with the same content of MFC exhibited values of 4.1 GPa and 59.6 MPa, respectively. Rheological analysis revealed that the complex viscosity and storage modulus at 170 °C of T-MFC-reinforced PP with 30 wt% MFC content are 5–7 and 5–8 times higher than that of B-MFC-reinforced PP, respectively. This indicated that T-MFC was more dispersed in the PP than B-MFC. Therefore, T-MFC produced a more rigid interconnected network in the matrix during the melting state than B-MFC.  相似文献   
90.
We propose a conformational search method to find a global minimum energy structure for protein systems. The simulated annealing is a powerful method for local conformational search. On the other hand, the genetic crossover can search the global conformational space. Our method incorporates these attractive features of the simulated annealing and genetic crossover. In the previous works, we have been using the Monte Carlo algorithm for simulated annealing. In the present work, we use the molecular dynamics algorithm instead. To examine the effectiveness of our method, we compared our results with those of the normal simulated annealing molecular dynamics simulations by using an α-helical miniprotein. We used genetic two-point crossover here. The conformations, which have lower energy than those obtained from the conventional simulated annealing, were obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号