首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3555篇
  免费   195篇
  国内免费   8篇
化学   2908篇
晶体学   41篇
力学   55篇
数学   133篇
物理学   621篇
  2023年   21篇
  2022年   38篇
  2021年   59篇
  2020年   67篇
  2019年   91篇
  2018年   75篇
  2017年   41篇
  2016年   93篇
  2015年   91篇
  2014年   105篇
  2013年   180篇
  2012年   237篇
  2011年   244篇
  2010年   130篇
  2009年   119篇
  2008年   215篇
  2007年   161篇
  2006年   178篇
  2005年   179篇
  2004年   145篇
  2003年   121篇
  2002年   98篇
  2001年   57篇
  2000年   67篇
  1999年   42篇
  1998年   31篇
  1997年   41篇
  1996年   37篇
  1995年   25篇
  1994年   43篇
  1993年   27篇
  1992年   44篇
  1991年   22篇
  1990年   31篇
  1989年   28篇
  1988年   31篇
  1987年   41篇
  1986年   30篇
  1985年   39篇
  1984年   37篇
  1983年   28篇
  1982年   38篇
  1981年   39篇
  1980年   40篇
  1979年   41篇
  1978年   28篇
  1977年   34篇
  1976年   27篇
  1975年   25篇
  1974年   18篇
排序方式: 共有3758条查询结果,搜索用时 15 毫秒
991.
The oxidation numbers of metals in inorganic compounds were identified by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) by using their acetylacetonates, which are soluble in acetone. For the MALDI analysis of inorganic species insoluble in common solvents used for matrices, such as acetone, methanol, water, etc., a suspension method of sample preparation was developed. Turbid suspensions of inorganic species in the solvent were spotted on the sample holder with chelating reagents, as in the conventional sample preparation for MALDI-MS. Chemical reaction between the inorganic species and the chelating reagents occurred in the plume after irradiation by laser light. Metal oxides were also analyzed by this method, and samples with different oxidation numbers gave different mass spectra. These results suggest that many other metal oxides with different oxidation numbers could be identified if suitable chelating reagents are chosen for sample preparation for MALDI-MS.  相似文献   
992.
1,3-Dipolar cycloaddition reactions of anhydro-5-hydroxyoxazolium hydroxide 3 generated from 2-piperidinecarboxylic acid and acetic anhydride, with dimethyl and diethyl acetylene-dicarboxylates, dibenzoylacetylene, p-benzoquinone, and 1,4-naphthoquinone gave the corresponding tetrahydroindolizines. In the case of the reaction with p-benzoquinone, the dihydroindolizine 12 was also formed. The primary N-bridged lactone intermediate 4 was isolated from the reaction of 2 with dibenzoylacetylene. Several attempted conversions of these tetrahydroindolizines into the corresponding aromatic indolizines were fruitless.  相似文献   
993.
The polymerization of isobutyl vinyl ether by the VCln–AIR3 system was carefully studied. The vanadium components were prepared by the reaction between VCl4 and AlEt3 or n-BuLi as a reducing agent. VCl3·LiCl and VCl2·2LiCl are the effective catalysts for the stereospecific polymerization of isobutyl vinyl ether. When VCl3·LiCl is combined with AlR3, a new catalytic system is formed. The effect of the preparative conditions of the various vanadium component in the AlR3–VCln system shows that the effective vanadium component is trivalent. In the polymerization by VCl3·LiCl–Al (i-Bu)3 system, a change of the polymerization mechanism may occur at Al(i-Bu)3/VCl3·LiCl ratio at around 5. When the ratio is lower than 5, a cationic polymerization by VCl3·LiCl takes place predominantly, while at ratios higher than 5, it is suggested that the polymerization proceeds by means of a VCl3·LiClA–Al(i-Bu)3 complex by a coordinated anionic mechanism. The polymers obtained by these catalysts are highly crystalline. Styrene was also polymerized by using the same catalysts. VCl3·LiCl and VCl3·LiCl–THF complex yielded amorphous polymer by cationic polymerization. When VCl3·LiCl was combined with 6 mole-eq of Al(i-Bu)3, the resulting polystyrene was highly crystalline and had an isotactic structure, while the VCl2·2LiCl–Al(i-Bu)3 (1:6) system yielded traces of polymer of extremely low stereoregularity. The results indicate that the effective vanadium component at Al/V ≧ 6 is trivalent and that the mechanism is a coordinated anionic one.  相似文献   
994.
This article describes the preparation of micron-size monodisperse polymer particles by dispersion copolymerization of styrene with a poly(2-oxazoline) macromonomer in an aqueous ethanol solution. The macromonomer acted as a comonomer as well as a stabilizer. The diameter of the particles increased as the concentration of the macromonomer decreased. The higher the molecular weight of the macromonomer, the smaller the particle size. The copolymerization in the solvent containing higher water content gave smaller polymer particles. Under the condition giving the monodisperse particles, the particles volume increased linearly with the yield of the particles. From ESCA analysis of the particle surface, poly(2-oxazoline) chains were enriched on the surface. © 1993 John Wiley & Sons, Inc.  相似文献   
995.
A new tetradentate tripodal ligand (L3) containing sterically bulky imidazolyl groups was synthesized, where L3 is tris(1-methyl-2-phenyl-4-imidazolylmethyl)amine. Reaction of a bis(mu-hydroxo)dicopper(II) complex, [Cu2(L3)2(OH)2]2+ (1), with H2O2 in acetonitrile at -40 degrees C generated a (mu-1,1-hydroperoxo)dicopper(II) complex [Cu2(L3)2(OOH)(OH)]2+ (2), which was characterized by various physicochemical measurements including X-ray crystallography. The crystal structure of 2 revealed that the complex cation has a Cu2(mu-1,1-OOH)(mu-OH) core and each copper has a square pyramidal structure having an N3O2 donor set with a weak ligation of a tertiary amine nitrogen in the apex. Consequently, one pendant arm of L3 in 2 is free from coordination, which produces a hydrophobic cavity around the Cu2(mu-1,1-OOH)(mu-OH) core. The hydrophobic cavity is preserved by hydrogen bondings between the hydroperoxide and the imidazole nitrogen of an uncoordinated pendant arm in one side and the hydroxide and the imidazole nitrogen of an uncoordinated pendant arm in the other side. The hydrophobic cavity significantly suppresses the H/D and 16O/18O exchange reactions in 2 compared to that in 1 and stabilizes the Cu2(mu-1,1-OOH)(mu-OH) core against decomposition. Decomposition of 2 in acetonitrile at 0 degrees C proceeded mainly via disproportionation of the hydroperoxo ligand and reduction of 2 to [Cu(L3)]+ by hydroperoxo ligand. In contrast, decomposition of a solid sample of 2 at 60 degrees C gave a complex having a hydroxylated ligand [Cu2(L3)(L3-OH)(OH)2]2+ (2-(L3-OH)) as a main product, where L3-OH is an oxidized ligand in which one of the methylene groups of the pendant arms is hydroxylated. ESI-TOF/MS measurement showed that complex 2-(L3-OH) is stable in acetonitrile at -40 degrees C, whereas warming 2-(L3-OH) at room temperature resulted in the N-dealkylation from L3-OH to give an N-dealkylated ligand, bis(1-methyl-2-phenyl-4-imidazolylmethyl)amine (L2) in approximately 80% yield based on 2, and 1-methyl-2-phenyl-4-formylimidazole (Phim-CHO). Isotope labeling experiments confirmed that the oxygen atom in both L3-OH and Phim-CHO come from OOH. This aliphatic hydroxylation performed by 2 is in marked contrast to the arene hydroxylation reported for some (mu-1,1-hydroperoxo)dicopper(II) complexes with a xylyl linker.  相似文献   
996.
Gold- and gold/silver-dendrimer nanocomposites have been synthesized by UV irradiation of their salts dissolved in ethanol containing dendrimers. As dendrimers, poly(amidomaine) PAMAM dendrimers and poly(propyleneimine) PPI dendrimers of various generations were used. The photoreduction of their salts is greatly accelerated by using benzoin as a photoinitiator. The sizes of gold in the nanocomposites are affected by the concentration of benzoin as well as the concentration of dendrimers, but are hardly changed with the kind of dendrimers. For gold/silver-dendrimer nanocomposites, the absorption spectra of gold/silver nanoparticles in the nanocomposites are very similar to the theoretical spectra of gold/silver alloy nanoparticles, suggesting the formation of gold/silver alloy nanoparticles. From the comparison of TEM and DLS measurements, it is found that the metal-dendrimer nanocomposites consist of metal nanoparticles covering by dendrimer molecules.  相似文献   
997.
In this study, DNA was first fabricated on a glassy carbon electrode by UV-irradiation. Through this process, water-soluble DNA was converted into insoluble materials, and a stable DNA film formed on the electrode. Ethidium bromide (EtBr), a typical model substance for harmful chemicals having planer structure, was used as an electroactive intercalator. This allowed our group to investigate the electrochemical and accumulative behaviors of the intercalator in UV-irradiated DNA film on the electrode. The UV-irradiated, DNA film-modified electrode (UV-DNA-FE) made it possible to accumulate electroactive EtBr on the electrode and detect it after accumulation. The modified electrode was used to detect dibenzofuran (DBF) as an environmental pollutant. The measurements were successfully obtained by focusing on the variation of the electrode response of EtBr, based on the competitive reaction between EtBr and DBF for the intercalating sites of DNA. The results indicated the possibility of using UV-DNA film as a sensing mechanism.  相似文献   
998.
The binding to normal and sialidase-treated human erythrocytes of six 125I-labeled lectins [Ulex europeus lectin I (UEA-1) and II (UEA-II), Laburnum alpinum lectins I (LAA-I) and II (LAA-II), and Cytisus multiflorus lectins I (CMA-I) and II (CMA-II)], was studied in detail. Quantitative inhibition assays of the lectin binding to the cells were also performed with various human milk oligosaccharides as inhibitors. Based on a comparison of the inhibition constants of the inhibitors thus obtained with the association constants of the lectins to the cells, the relative activities of cell surface blood group antigens toward the lectins are discussed.  相似文献   
999.
Reaction of the platinum(III) dimeric complex [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(NO(3))(2)](NO(3))(2) (1), prepared in situ by the oxidation of the platinum blue complex [Pt(4)(NH(3))(8)((CH(3))(3)CCONH)(4)](NO(3))(5) (2) with Na(2)S(2)O(8), with terminal alkynes CH[triple bond]CR (R = (CH(2))(n)CH(3) (n = 2-5), (CH(2))(n)CH(2)OH (n = 0-2), CH(2)OCH(3), and Ph), in water gave a series of ketonyl-Pt(III) dinuclear complexes [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(2)COR)](NO(3))(3) (3, R = (CH(2))(2)CH(3); 4, R = (CH(2))(3)CH(3); 5, R = (CH(2))(4)CH(3); 6, R = (CH(2))(5)CH(3); 7, R = CH(2)OH; 8, R = CH(2)CH(2)OH; 9, R = (CH(2))(2)CH(2)OH; 10, R = CH(2)OCH(3); 11, R = Ph). Internal alkyne 2-butyne reacted with 1 to form the complex [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(CH(3))COCH(3))](NO(3))(3) (12). These reactions show that Pt(III) reacts with alkynes to give various ketonyl complexes. Coordination of the triple bond to the Pt(III) atom at the axial position, followed by nucleophilic attack of water and hydrogen shift from the enol to keto form, would be the mechanism. The structures of complexes 3.H(2)O, 7.0.5C(3)H(4)O, 9, 10, and 12 have been confirmed by X-ray diffraction analysis. A competitive reaction between equimolar 1-pentyne and 1-pentene toward 1 produced complex 3 and [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(2)CH(OH)CH(2)CH(2)CH(3))](NO(3))(3) (14) at a molar ratio of 9:1, suggesting that alkyne is more reactive than alkene. The ketonyl-Pt(III) dinuclear complexes are susceptible to nucleophiles, such as amines, and the reactions with secondary and tertiary amines give the corresponding alpha-amino-substituted ketones and the reduced Pt(II) complex quantitatively. In the reactions with primary amines, the once formed alpha-amino-substituted ketones were further converted to the iminoketones and diimines. The nucleophilic attack at the ketonyl group of the Pt(III) complexes provides a convenient means for the preparation of alpha-aminoketones, alpha-iminoketones, and diimines from the corresponding alkynes and amines.  相似文献   
1000.
A new series of low-melting, low-viscosity, hydrophilic ionic liquids, which comprise 1-ethyl-3-methylimidazolium ([EMI]+) and alkyl(alkenyl)trifluoroborate anions ([RBF3]-, R=n-C(m)H(2m+1) (m=1-5), CH2CH), were prepared and characterized. The phase-transition behavior, thermal stability, density, viscosity, conductivity, and surface tension of these salts were measured. The influence of the structural variations, such as changing the length and fluorination of the alkyl chain (R) in the anion [RBF3]-, on the above properties was extensively investigated. The low viscosity of these [RBF3]- salts suggests that a high degree of freedom and/or a somewhat flat-shaped feature in the anion make an important contribution to reducing the viscosity. The Walden products for each salt are not constant and vary with temperature, which suggests that the ions in these salts are not completely dissociated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号