首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   558篇
  免费   19篇
  国内免费   6篇
化学   364篇
晶体学   1篇
力学   16篇
数学   26篇
物理学   176篇
  2023年   2篇
  2021年   6篇
  2020年   15篇
  2019年   15篇
  2018年   7篇
  2017年   5篇
  2016年   11篇
  2015年   7篇
  2014年   11篇
  2013年   24篇
  2012年   32篇
  2011年   36篇
  2010年   15篇
  2009年   20篇
  2008年   41篇
  2007年   31篇
  2006年   38篇
  2005年   27篇
  2004年   23篇
  2003年   17篇
  2002年   29篇
  2001年   7篇
  2000年   11篇
  1999年   3篇
  1998年   6篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   8篇
  1993年   6篇
  1992年   9篇
  1991年   6篇
  1990年   9篇
  1989年   5篇
  1988年   4篇
  1987年   9篇
  1986年   12篇
  1985年   12篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   10篇
  1980年   4篇
  1979年   3篇
  1978年   6篇
  1977年   2篇
  1976年   2篇
  1974年   5篇
  1969年   2篇
  1965年   1篇
排序方式: 共有583条查询结果,搜索用时 15 毫秒
11.
The one-pot reaction of ethyl 1-cyclopropyl-6,7,8-trifluoro-1,4-dihydro-4-oxoquinoline-3-carboxylate ( 6 ) with tert-butyl acetoacetate gave 3-tert-butyl 7-ethyl 9-cyclopropyl-4-fluoro-6,9-dihydro-2-methyl-6-oxofuro[3,2-h]quinoline-3,7-dicarboxylate ( 5 ). This regioselective cyclization was rationalized by the Hard and Soft Acids and Bases principle. By use of a similar furan-forming reaction, we prepared 2-(amino-methyl)furo[3,2-h]quinoline-7-carboxylic acid 4 . Compound 4 showed weak antibacterial activity.  相似文献   
12.
In bacteriorhodopsin (bR), Arg-82bR has been proven to be a very important residue for functional role of this light-driven proton pump. The arginine residue at this position is a super-conserved residue among archaeal rhodopsins. pharaonis phoborhodopsin (ppR; or called as "pharaonis sensory rhodopsin II") has its absorption maximum at 498 nm and acts as a sensor in the membrane of Natronobacterium pharaonis, mediating the negative phototaxis from the light of wavelength shorter than 520 nm. To investigate the role of the arginine residue (Arg-72ppR) of ppR corresponding to Arg-82bR, mutants whose Arg-72ppR was replaced by alanine (R72A), lysine (R72K), glutamine (R72Q) and serine (R72S) were prepared. These mutants were unstable in low concentrations of NaCl and lost their color gradually when the proteins were solubilized with 0.1% n-dodecyl-beta-D-maltoside. The order of instability was R72S > R72A > R72K > R72Q > the wild type. The rates of denaturation were reduced in a solution of high concentrations of monovalent anions.  相似文献   
13.
The effect of pH on the molecular shape and dispersed state of native ovalbumin molecules in 20 mM phosphate and acetic acid buffer solutions has been studied using small-angle x-ray scattering (SAXS) and a rheological method The degree of association of the OA molecule at the 0.5% colloid system increases slightly with decreasing pH, i.e., 2.10 at pH 7.0, and 2.88 at pH 4.0, and the radius of the OA molecule decreases slightly with decreasing pH, i.e., 24.5 Å at pH 7.0, and 22.0 Å at pH 4.0.The OA colloid shows apparent yield stress and rigidity which are due to a certain ordered arrangement of the molecules. The yield stress and the rigidity increase abruptly at a pH value near to an isoelectric point (ca. pH 4.4). In the dilute system this increment is attributed to the change in the ordered arrangement or in the interparticle interaction, and not to the change in the association state of the OA molecules. The values of the yield stress and the rigidity remain almost constant over a wide concentration range and this feature (an auto-controlled mechanism) is kept over a certain range of pH.  相似文献   
14.
15.
16.
A catalytic enantioselective synthesis of β-amino secondary amides was achieved using vinyl azides as the enamine-type nucleophile and chiral N-Tf phosphoramide as the chiral Brønsted acid catalyst through a five-step sequential transformation in one pot. The established sequential transformation involves an enantioselective [4+2] cycloaddition reaction of vinyl azides with N-acyl imines as the key stereo-determining step that is efficiently accelerated by a chiral N-Tf phosphoramide catalyst in a highly enantioselective manner in most cases. Further generation of the iminodiazonium ion intermediate through ring opening of the cycloaddition product and subsequent skeletal rearrangement involving Schmidt-type 1,2-aryl group migration followed by recyclization of the resulting nitrilium ion were also initiated by the same acid catalyst. Final acid hydrolysis of the recyclized products in the same pot gave rise to enantioenriched β-amino amides through C−C bond formation at the α-position of the secondary amides.  相似文献   
17.
New protocols for controlled reduction of carboxamides to either alcohols or amines were established using a combination of sodium hydride (NaH) and zinc halides (ZnX2). Use of a different halide on ZnX2 dictates the selectivity, wherein the NaH‐ZnI2 system delivers alcohols and NaH‐ZnCl2 gives amines. Extensive mechanistic studies by experimental and theoretical approaches imply that polymeric zinc hydride (ZnH2) is responsible for alcohol formation, whereas dimeric zinc chloride hydride (H?Zn?Cl)2 is the key species for the production of amines.  相似文献   
18.
Canagliflozin is a novel, orally selective inhibitor of sodium‐dependent glucose co‐transporter‐2 (SGLT2) for the treatment of patients with type 2 diabetes mellitus. In this study, a validated liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for the quantitative analysis of canagliflozin in a lower volume of rat plasma (0.1 mL) was established and applied to a pharmacokinetic study in rats. Following liquid–liquid extraction by tert‐butyl methyl ether, chromatographic separation of canagliflozin was performed on a Quicksorb ODS (2.1 mm i.d. × 150 mm, 5 µm size) using acetonitrile–0.1% formic acid (90:10, v/v) as the mobile phase at a flow rate of 0.2 mL/min. The detection was carried out using an API 3200 triple‐quadrupole mass spectrometer operating in the positive electrospray ionization mode. Selected ion monitoring transitions of m/z = 462.0 [M + NH4]+ → 191.0 for canagliflozin and m/z = 451.2 [M + H]+ → 71.0 for empagliflozin (internal standard) were obtained. The validation of the method was investigated, and it was found to be of sufficient specificity, accuracy and precision. Canagliflozin in rat plasma was stable under the analytical conditions used. This validated method was successfully applied to assess the pharmacokinetics of canagliflozin in rats using 0.1 mL rat plasma. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
19.
Differential measurements of elliptic flow (v2) for Au+Au and Cu+Cu collisions at sqrt[sNN]=200 GeV are used to test and validate predictions from perfect fluid hydrodynamics for scaling of v2 with eccentricity, system size, and transverse kinetic energy (KE T). For KE T identical with mT-m up to approximately 1 GeV the scaling is compatible with hydrodynamic expansion of a thermalized fluid. For large values of KE T mesons and baryons scale separately. Quark number scaling reveals a universal scaling of v2 for both mesons and baryons over the full KE T range for Au+Au. For Au+Au and Cu+Cu the scaling is more pronounced in terms of KE T, rather than transverse momentum.  相似文献   
20.
A photoaffinity labeling (PAL)‐based method for the rapid identification of target proteins is presented in which a high‐performance chemical tag, an isotope‐coded fluorescent tag (IsoFT), can be attached to the interacting site by irradiation. Labeled peptides can be easily distinguished among numerous proteolytic digests by sequential detection with highly sensitive fluorescence spectroscopy and mass spectrometry. Subsequent MS/MS analysis provides amino acid sequence information with a higher depth of coverage. The combination of PAL and heterogeneous target‐selecting techniques significantly reduces the amount of time and protein required for identification. An additional photocleavable moiety successfully accelerated proteomic analysis using cell lysate. This method is a widely applicable approach for the rapid and accurate identification of interacting proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号