首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   25篇
化学   460篇
晶体学   2篇
力学   1篇
数学   9篇
物理学   42篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   11篇
  2019年   9篇
  2018年   11篇
  2017年   5篇
  2016年   9篇
  2015年   12篇
  2014年   10篇
  2013年   27篇
  2012年   39篇
  2011年   45篇
  2010年   10篇
  2009年   16篇
  2008年   37篇
  2007年   32篇
  2006年   46篇
  2005年   61篇
  2004年   48篇
  2003年   31篇
  2002年   12篇
  2001年   4篇
  2000年   4篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1990年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1911年   1篇
  1909年   2篇
  1903年   1篇
排序方式: 共有514条查询结果,搜索用时 859 毫秒
91.
Graphene oxide (GO) nanosheets have received a great deal of attention for a wide range of applications from optoelectronic devices to biological sensors. We now report a mechanistic study of the interfacial electron transfer (ET) processes between organic dye molecule, 9-phenyl-2,3,7-trihydroxy-6-fluorone (PF), and nanometre-sized GO sheets using ensemble-averaged and single-molecule spectroscopies. The ET dynamics was characterized by the direct observation of the PF radical cation during the laser flash photolysis, and its reaction rate was determined to be ~10(11) s(-1). The single-molecule fluorescence spectroscopy was utilized to clarify the heterogeneous nature of the interfacial ET within individual composites. Their fluorescence lifetimes and spectra were found to vary from composite to composite, possibly due to the different local structures and molecular interactions. The autocorrelation analysis of fluorescence intensity trajectories also revealed the temporal fluctuation of the ET reactivity.  相似文献   
92.
Pulse radiolysis is a powerful method to realize real-time observation of various redox processes, which induces various structural and functional changes occurring in biological systems. However, its application has been mainly limited to studies of the redox reactions of rather smaller biological systems such as DNA because of an undesired reaction due to various free radicals generated by pulse radiolysis. For application of pulse radiolysis to generate plenty of redox reactions of biological systems, selective redox reactions induced by electron pulses have to be developed. In this study, we report that in the presence of the high concentration of the denaturant, guanidine HCl (GdHCl), the selective reduction of the oxidized cytochrome c (Cyt c) takes place in time scales of a few microseconds by the electron transfer from the guanidine radical that is formed by the fast reaction of e(aq)(-) with GdHCl, consequently leading to folding kinetics of Cyt c. By providing insight into the folding dynamics of Cyt c, we show that the pulse radiolysis technique can be used to track the folding dynamics of various biomolecules in the presence of a denaturant including GdHCl.  相似文献   
93.
Exposure of 4-azachalcones to HCl gas produced the corresponding HCl salts with a head-to-tail stacked alignment, irradiation of which produced the corresponding syn-HT dimers with high regio- and stereoselectivities, thus showing the effectiveness of the cascade process in crystals.  相似文献   
94.
A simple NaOMe catalyst provides superior accessibility to a wide variety of functionalized amides including peptides through direct amination of esters in an atom-economical and environmentally benign way.  相似文献   
95.
We analyzed the photoinactivation of the membrane functions of bacteria and erythrocytes induced by xanthene dyes. The dyes tested were rose bengal, phloxine B, erythrosine B and eosin B. These dyes induced the leakage of K(+) from Staphylococcus aureus cells within minutes of photoirradiation, in the order of rose bengal > phloxine B > erythrosine B > eosin B. The ability of dyes to inhibit respiration was weak, except for rose bengal, and the dyes dissipated the membrane potential in similar time traces with changes in K(+) permeability. The xanthene dyes also induced the leakage of K(+) from bovine erythrocytes upon photoirradiation in the same order as that observed with bacteria. Furthermore, we found that the ability to cause the leakage of K(+) from erythrocytes was associated with dye-induced morphological changes, forming a crenated form from the normal discoid. These results are discussed in connection with the ability of xanthene dyes to generate singlet oxygen and bind to bacterial cells, and further compared with the actions of cationic porphyrins, which induced photoinactivation of bacteria through respiratory inhibition.  相似文献   
96.
97.
The present study examined the liquid membrane transport of the cationic protein cytochrome c, using the macrocyclic compound calix[6]arene, which is a carboxylic acid derivative, as a carrier. The transport rate was governed by carrier concentration and the pH gradient between the feed and the receiving phases, as well as the salt concentration in the aqueous phases. Transport of cytochrome c was examined using a series of calix[n]arene carboxylic acid derivatives (n = 4, 6 and 8). Cytochrome c successfully permeated membranes in the presence of the calix[6]arene derivative. Liquid membrane separation of cytochrome c from a mixture of cationic proteins was demonstrated under optimal conditions. Cytochrome c was selectively extracted by the calix[6]arene carboxylic acid derivative and 77% of the extracted cytochrome c was recovered into the receiving phase. In this liquid membrane system, which discriminates between the number of lysine residues on the surface of proteins, cationic proteins with similar molecular weights and pIs were separated with macrocyclic compounds.  相似文献   
98.
99.
A cationic fluorescent nanogel thermometer based on thermo‐responsive N‐isopropylacrylamide and environment‐sensitive benzothiadiazole was developed with a new azo compound bearing imidazolium rings as the first cationic radical initiator. This cationic fluorescent nanogel thermometer showed an excellent ability to enter live mammalian cells in a short incubation period (10 min), a high sensitivity to temperature variations in live cells (temperature resolution of 0.02–0.84 °C in the range 20–40 °C), and remarkable non‐cytotoxicity, which permitted ordinary cell proliferation and even differentiation of primary cultured cells.  相似文献   
100.
Formation and decay of radical cations of trans-stilbene and p-substituted trans-stilbenes (S.+) during the resonant two-photon ionization (TPI) of S in acetonitrile in the presence and absence of O(2) have been studied with laser flash photolysis using a XeCl excimer laser (308 nm, fwhm 25 ns). The transient absorption spectra of S.+ were observed with a peak around 470-490 nm. The formation quantum yield of S.+ (0.06-0.29) increased with decreasing oxidation potential (E(ox)) and increasing fluorescence lifetime (tau(f)) of S, except for trans-4-methoxystilbene which has the lowest E(ox) and longer tau(f) among S. The considerable low yield and fast decay in a few tens of nanoseconds time scale were observed for trans-4-methoxystilbene.+ in the presence of O(2), but not for other S.+ . It is suggested that formation of the ground-state complex between trans-4-methoxystilbene and O(2) and the distonic character of trans-4-methoxystilbene.+ with separation and localization of the positive charge on the oxygen of the p-methoxyl group and an unpaired electron on the beta-olefinic carbon are responsible for the fast reaction of trans-4-methoxystilbene.+ with O(2) or superoxide anion, leading to the considerable low yield and fast decay of trans-4-methoxystilbene.+ . The mechanism based on the transient absorption measurement of S.+ during the TPI is consistent with the relatively high oxidation efficiency of trans-4-methoxystilbene among S based on the product analysis during the photoinduced electron transfer in the presence of a photosensitizer such as 9,10-dicyanoanthracene and O(2) in acetonitrile.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号