首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   2篇
化学   75篇
晶体学   1篇
数学   2篇
物理学   41篇
  2022年   5篇
  2020年   3篇
  2018年   1篇
  2017年   1篇
  2015年   5篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   13篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   10篇
  2006年   3篇
  2005年   6篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
91.
A high resolution approach to silver ion HPLC was studied for the separation of positional isomers of triacylglycerols (TAGs) containing long chain polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and docosapentaenoic acid (DPA) in enzymatically synthesized structured TAGs. Isopropanol was used as a novel modifier in a hexane-acetonitrile based mobile phase for silver ion HPLC. Peak identification was based on HPLC-mass spectroscopy and selectivities of lipases. Positional isomers of TAGs containing one molecule of EPA, DHA, or DPA with saturated fatty acids (FAs) such as caprylic acid and palmitic acid were separated within 13 min using a gradient of hexane-isopropanol-acetonitrile as mobile phase. TAGs containing two or more EPA, DHA, or DPA were also separated from each other within 25 min, but their positional isomers were unresolved. The retention characteristics of the TAG were found to be related to the number of carbon atoms in the FAs present in addition to the number of double bonds and their isomeric configuration. One isomer with an unsaturated FA in the sn-2 position eluted faster than the other with the unsaturated FA in the sn-1 or 3 position. Species with longer chain FAs attached to TAGs with the same degree of unsaturation eluted faster than those that have shorter chain FAs. For example, docosapentaenoylhexadecanoyloctanoin (DPA/C16/C8) was eluted faster than dioctanoyldocosapentaenoin (DPA/C8/C8).  相似文献   
92.
The nature of the chiral phase transition in lattice QCD is studied for the cases of 2, 3 and 6 flavors with degenerate Wilson quarks, mainly on a lattice with the temporal direction extensionN t=4. We find that the chiral phase transition is continuous for the case of 2 flavors, while it is of first order for 3 and 6 flavors.  相似文献   
93.
Surface topography of the {0 0 0 1} facet plane of as-grown 6H- and 4H-SiC crystals was studied ex situ by Nomarski optical microscopy (NOM) and atomic force microscopy (AFM). The surface polarity and the polytype of grown crystals largely affect the growth surface morphology of SiC{0 0 0 1} via differences in several thermodynamic and kinetic parameters. NOM observations revealed giant steps of a few micrometers in height on the {0 0 0 1} growth facet, and it was found that a morphological transition of the growth facet occurred when the growth conditions were changed. AFM imaging of the stepped structure of SiC{0 0 0 1} detected steps of height equal to the unit c-lattice parameter (c=1.512 nm for 6H-SiC and 1.005 nm for 4H-SiC). They are fairly straight and very regularly arranged, giving rise to equidistant step trains. Upon nitrogen doping, these regular step trains on the 6H-SiC(0 0 0  )C and 4H-SiC(0 0 0  )C surfaces became unstable: the equidistant step trains were transformed into meandering macrosteps of height greater than 10 nm. In this paper, we discuss the mechanism of macrostep formation (step bunching) on the SiC{0 0 0 1} surfaces through the consideration of the interplay between step energetics (repulsive step interaction) and kinetics (asymmetric step kinetics) on the growing crystal surface and elucidate how they affect the growth surface morphology of the SiC{0 0 0 1} facet.  相似文献   
94.
We combined a nickel–aluminum–zirconium complex hydroxide (NAZ) with colloidal silica as a binder to prepare a granulated agent for adsorbing heavy metals from aqueous media. Three samples with different particle diameters were prepared to evaluate the effects on the properties: small (NAZ-S), medium (NAZ-M), and large (NAZ-L). We confirmed the granulation of the prepared samples at a binder content of 25%. NAZ-S had the largest specific surface area and number of hydroxyl groups, followed by NAZ-M and then NAZ-L. Regarding the adsorption capacity, NAZ-S adsorbed the most chromium(VI) ions followed by NAZ-M and then NAZ-L. The binding energy of Cr(2p) at 575–577 eV was detected after adsorption, and the effects of the temperature, contact time, and pH on the adsorption of chromium(VI) ions were evaluated. We identified the following adsorption mechanism: ion exchange with sulfate ions in the interlayer region of the NAZ samples. Finally, the chromium(VI) ions adsorbed by the NAZ samples were easily desorbed using a desorption solution. The results showed that NAZ offers great potential for the removal of chromium(VI) ions from aqueous solutions.  相似文献   
95.
Colorless tetrazole thiolate/sulfide redox couples carrying long alkyl groups, such as n-butyl, n-hexyl, and n-octyl groups, were synthesized as electrolytes in iodine/iodide-free dye-sensitized solar cells (DSSCs). Among N719/TiO2-based DSSCs employing these highly soluble redox couples for 3-methoxypropionitrile (3-MPN) and ionic liquid with PEDOT counter electrode, the DSSC with n-hexyl redox analogue gave an optimized η value of 4.32%. An observed respectable quantum efficiency for 400–500 nm light is in sharp contrast to the decreased performance for iodine/iodide systems that originates from the substantial light absorption of iodine. On the other hand, the redox possessing n-octyl group significantly lowered the cell performance, which could be a result of the much increased resistance of electrolyte diffusion in the DSSC.  相似文献   
96.
It has been considered that crystallization of polymer from melt proceeds via the coexistence of molten matrix and growing crystals that have once overcome a nucleation barrier to a critical size. The nucleation process has often been explained analogously with so-called nucleation and growth (NG) behavior of the phase separation of a binary mixture in metastable conditions, although the crystallization in one-component polymer is not a real component separation but a phase transition. Among the mechanisms of polymer crystallization, the topic is whether a liquid–liquid transition between states of different densities within one-component polymers takes place before the aforementioned nucleation process. The liquid–liquid transition between states, which is probably driven by chain orientation, is also categorized into NG and the controversial spinodal decomposition (SD) type processes depending on the quenching depth. This article provides the optical microscopic observations that favor the occurrence of the SD-like process when a one-component polymer melt is very rapidly quenched below a stability limit, including a drastic morphological change from a spherulitic to a spinodal pattern at the critical (or spinodal) temperature. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1817–1822, 2004  相似文献   
97.
Silicon-substituted hydroxyapatite (Si-HAp) has shown promising properties such as high-bone remodeling around implants. So far, the techniques used for the structural characterization of the Si-HAp have given indirect evidence of the presence of silicon inside the structure (by X-ray and neutron diffraction). In this paper, we focus on Si-HAp derivatives obtained by a precipitation method (widely described in the literature). We demonstrate here by solid-state NMR spectroscopy that only a fraction of the silicon atoms are incorporated into the HAp lattice in the form of Q(0) (SiO(4) (4-)) species, for 4.6 wt% Si-HAp. A large amount of silicate units are located outside the HAp structure and correspond to silica-gel units. All results were established through (29)Si MAS, (1)H -->(29)Si CP MAS and T(1)rho((1)H) edited (1)H -->(29)Si CP MAS experiments. This last pulse scheme acted as a powerful editing sequence, leading to unambiguous spectroscopic conclusions, concerning the location of the SiO(4) (4-) moieties.  相似文献   
98.
Sensitized luminescence behavior of lanthanide (Ln=Eu3+, Tb3+) macrocyclic cyclen (1,4,7,10-tetraazacyclododecane) complexes bearing one or four benzophenone (BP) moieties as antenna (LnL1 and LnL4) has been studied in water. Despite higher molar extinction coefficient of EuL4 owing to four antennae, it shows only one-thirtieth the luminescence intensity of EuL1. Energy level of triplet excited-state of BP antenna (ET) is only a few kJ mol−1 higher than that of 5D2 excited-state of Eu3+, thus promoting a back energy transfer (BET) from 5D2 of Eu3+ to ground-state BP antennae. On EuL4 bearing four antennae, BET occurs more rapidly than that on EuL1, thus exhibiting much weaker luminescence. For Tb complexes, the energy gap between ET of BP antenna and 5D4 excited state of Tb3+ is large enough (>13 kJ mol−1), such that practically no BET occurs. The luminescence intensity of TbL4 is, however, lower (two-third) than that of TbL1. Time-resolved luminescence measurement reveals that hydration number of Tb3+ within TbL4 is twice that within TbL1. This is because the structural distortion of ligands on TbL4, caused by an intramolecular dipole-dipole interaction among the BP antennae, allows coordination of higher number of H2O molecules to Tb3+, thus leading to a strong Tb luminescence quenching via O-H oscillators.  相似文献   
99.
Ag cocatalyst-loaded ALa(4)Ti(4)O(15) (A = Ca, Sr, and Ba) photocatalysts with 3.79-3.85 eV of band gaps and layered perovskite structures showed activities for CO(2) reduction to form CO and HCOOH by bubbling CO(2) gas into the aqueous suspension of the photocatalyst powder without any sacrificial reagents. Ag cocatalyst-loaded BaLa(4)Ti(4)O(15) was the most active photocatalyst. A liquid-phase chemical reduction method was better than impregnation and in situ photodeposition methods for the loading of the Ag cocatalyst. The Ag cocatalyst prepared by the liquid-phase chemical reduction method was loaded as fine particles with the size smaller than 10 nm on the edge of the BaLa(4)Ti(4)O(15) photocatalyst powder with a plate shape during the CO(2) reduction. CO was the main reduction product rather than H(2) even in an aqueous medium on the optimized Ag/BaLa(4)Ti(4)O(15) photocatalyst. Evolution of O(2) in a stoichiometric ratio (H(2)+CO:O(2) = 2:1 in a molar ratio) indicated that water was consumed as a reducing reagent (an electron donor) for the CO(2) reduction. Thus, an uphill reaction of CO(2) reduction accompanied with water oxidation was achieved using the Ag/BaLa(4)Ti(4)O(15) photocatalyst.  相似文献   
100.
The nature of QCD phase transition is studied with massless up and down quarks and a light strange quark, using the Wilson formalism for quarks on a lattice with the temporal direction extensionN t=4. We find that the phase transition is of first order for the physical strange quark mass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号