首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1883篇
  免费   268篇
  国内免费   214篇
化学   1405篇
晶体学   19篇
力学   85篇
综合类   6篇
数学   200篇
物理学   650篇
  2024年   2篇
  2023年   42篇
  2022年   80篇
  2021年   85篇
  2020年   94篇
  2019年   80篇
  2018年   60篇
  2017年   62篇
  2016年   88篇
  2015年   107篇
  2014年   108篇
  2013年   130篇
  2012年   183篇
  2011年   210篇
  2010年   130篇
  2009年   107篇
  2008年   115篇
  2007年   112篇
  2006年   94篇
  2005年   76篇
  2004年   66篇
  2003年   36篇
  2002年   35篇
  2001年   13篇
  2000年   25篇
  1999年   29篇
  1998年   38篇
  1997年   24篇
  1996年   33篇
  1995年   17篇
  1994年   21篇
  1993年   6篇
  1992年   9篇
  1991年   8篇
  1990年   12篇
  1989年   2篇
  1988年   3篇
  1987年   6篇
  1986年   9篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
排序方式: 共有2365条查询结果,搜索用时 0 毫秒
151.
The dicarbollide ion, nido-C2B9H112− is isoelectronic with cyclopentadienyl. Herein, we make dysprosiacarboranes, namely [(C2B9H11)2Ln(THF)2][Na(THF)5] (Ln=Dy, 1Dy ) and [(THF)3(μ-H)3Li]2[{η5-C6H4(CH2)2C2B9H9}Dy{η25-C6H4(CH2)2C2B9H9}2Li] 3Dy and show that dicarbollide ligands impose strong magnetic axiality on the central DyIII ion. The effective energy barrier (Ueff) for the loss of magnetization can be varied by the substitution pattern on the dicarbollide. This finding is demonstrated by comparing complexes of nido-C2B9H112− and nido-[o-xylylene-C2B9H9]2−, which show a Ueff of 430(5) K and 804(7) K, respectively. The blocking temperature defined by the open hysteresis temperature of 3Dy reaches 6.8 K. Moreover, the linear complex [Dy(C2B9H11)2] is predicted to have comparable properties with the linear [Dy(CpMe3)2]+ complex. As such, carboranyl ligands and their derivatives may provide a new type of organometallic ligand for high-performance single-molecule magnets.  相似文献   
152.
The lithium–sulfur battery is an attractive option for next‐generation energy storage owing to its much higher theoretical energy density than state‐of‐the‐art lithium‐ion batteries. However, the massive volume changes of the sulfur cathode and the uncontrollable deposition of Li2S2/Li2S significantly deteriorate cycling life and increase voltage polarization. To address these challenges, we develop an ?‐caprolactam/acetamide based eutectic‐solvent electrolyte, which can dissolve all lithium polysulfides and lithium sulfide (Li2S8–Li2S). With this new electrolyte, high specific capacity (1360 mAh g?1) and reasonable cycling stability are achieved. Moreover, in contrast to conventional ether electrolyte with a low flash point (ca. 2 °C), such low‐cost eutectic‐solvent‐based electrolyte is difficult to ignite, and thus can dramatically enhance battery safety. This research provides a new approach to improving lithium–sulfur batteries in aspects of both safety and performance.  相似文献   
153.
Lulu Fu  Jin Zhai 《Electrophoresis》2019,40(16-17):2058-2074
Biomimetic smart nanochannels have been studied extensively to achieve the precise ionic transport compared to biological ion channels. Similar to ion channels in living organisms, biomimetic smart nanochannels can respond to various stimuli, which allows for promising applications in many fields. In this review, we mainly summarize the recent advances in the design of biomimetic stimuli‐responsive nanochannels and their potential applications including biosensors and drug delivery. Finally, an outlook on the challenges and opportunities for biomimetic stimuli‐responsive nanochannels is provided.  相似文献   
154.
A better understanding of nanoelectrospray ionization (nano‐ESI) would be beneficial in further improving the performances of nano‐ESI. In this work, the pulsed high‐voltage (HV) nano‐ESI has been electrically modeled and then systematically characterized by both voltage‐current and mass spectrometry measurements. First, the equivalent resistance of a nano‐ESI source changes with respect to both emitter tip diameter and the HV applied. Increased voltage could improve both spray current and ionization efficiency of the pulsed HV nano‐ESI. Compared with conventional DC HV method, a pulsed HV has less heating effect on the capillary tip and thus allowing the application of a much higher voltage onto a nano‐ESI source. As a result, a pulsed HV nano‐ESI could further boost the ionization efficiency of nano‐ESI by employing even higher voltages than conventional DC nano‐ESI sources.  相似文献   
155.
Kinetically protected 2‐silyl‐1,3‐diphosphapropenes that bear both sp2‐ and sp3‐type phosphorus atoms were employed in the preparation of gold complexes. The structural properties of the 1,3‐diphosphapropene digold(I) complexes were characterized by spectroscopic and crystallographic analyses, which revealed unique aurophilic interactions and conformational properties of the ligand. The 2‐silyl‐1,3‐diphosphapropene‐bis(chlorogold) complexes catalyzed cycloisomerization reactions of 1,6‐enyne derivatives even in the absence of silver co‐catalyst, and were able to be recovered after the reaction. The catalytic activity of the digold complexes primarily depended on the sp2‐type phosphorus atom and the silyl group, and could be tuned by the sp3‐phosphino group. Additionally, results on the catalytic activity of the digold complex in the presence and absence of silver salts showed considerable differences.  相似文献   
156.
A novel poly(aniline‐coo‐aminophenol) (PAOA)/mesoporous silica SBA‐15 nanocomposite was synthesized and investigated for adsorption of Hg (II) from aqueous solutions of wide pH range. A chemical oxidation method was employed for polymerization of aniline and o‐aminophenol on an ordered SBA‐15 template to obtain a significantly enlarged BET surface area of the adsorbent. Efficiency study revealed that the PAOA/SBA‐15 could reach a maximum Hg (II) adsorption capacity of over 400 mg/g. Kinetic study showed that the Hg (II) adsorption by the PAOA/SBA‐15 fitted a pseudo‐second‐order kinetic model, indicating that the mercury adsorption process was predominantly controlled by chemical process. The results of this study also proved that the adsorbed Hg (II) could be effectively desorbed from the PAOA/SBA‐15 in 0.1M HCl and 5% sulfocarbonide solutions. Associated adsorption mechanism was also investigated by means of Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS) techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
157.
20(R)-panaxadiol (PD) was metabolised by the fungus Aspergillus niger AS 3.3926 to its C-3 carbonylated metabolite and five other hydroxylated metabolites (1–6). Their structures were elucidated as 3-oxo-20(R)-panaxadiol (1), 3-oxo-7β-hydroxyl- 20(R)-panaxadiol (2), 3-oxo-7β,23α-dihydroxyl-20(R)-panaxadiol (3), 3,12-dioxo- 7β,23β-dihydroxyl-20(R)-panaxadiol (4), 3-oxo-1α,7β-dihydroxyl-20(R)-panaxadiol (5) and 3-oxo-7β,15β-dihydroxyl-20(R)-panaxadiol (6) by spectroscopic analysis. Among them, compounds 26 were new compounds. Pharmacological studies revealed that compound 6 exhibited significant anti-hepatic fibrosis activity.  相似文献   
158.
A novel method combining molecular imprinting and SPE was developed in a capillary column for the determination of auramine O in shrimp. The capillary monolithic column was prepared by UV‐initiated in situ polymerization, using auramine O as template and methacrylic acid and ethylene dimethacrylate as functional monomer and cross‐linker, respectively. The properties of the prepared capillary monolithic column were investigated under the optimized conditions coupled with HPLC, and then the morphologies of the inner polymers were characterized by SEM. The calibration curve was expressed as A = 103C + 19.8 (r = 0.9992) with a linear range of 0.25–25.0 μg/mL, and the recoveries of auramine O at different concentrations in shrimp ranged from 90.5 to 92.4% with RSDs ranging from 2.1 to 4.4%. The capacities of the molecularly imprinted polymer and nonimprinted polymer columns were 0.722 and 0.147 μg/mg, respectively, and the LOD (S/N = 3) of auramine O in shrimp was 17.85 μg/kg. Under the selected conditions, the enrichment factors obtained were higher than 70‐fold. The results indicate that the prepared molecularly imprinted capillary monolithic column was reliable and applicable to the analysis of auramine O in shrimp.  相似文献   
159.
Potential energy curves of 22 electronic states of RhN have been calculated by the complete active space second‐order perturbation theory method. The X1Σ0+ is assigned as the ground state, and the first excited state a3Π0+ is 978 cm?1 higher. The 1Δ(I) and B1Σ+ states are located at 9521 and 13,046 cm?1 above the ground state, respectively. The B1Σ+ state should be the excited state located 12,300 cm?1 above the ground state in the experimental study. Moreover, two excited states, C1Π and b3Σ+, are found 14,963 and 15,082 cm?1 above the X1Σ+ state, respectively. The transition C1Π1–X1Σ0+ may contribute to the experimentally observed bands headed at 15,071 cm?1. There are two excited states, D1Δ and E1Σ+, situate at 20,715 and 23,145 cm?1 above the X1Σ+ state. The visible bands near 20,000 cm?1 could be generated by the electronic transitions D1Δ2–a3Π1 and E1Σ+0–X1Σ+0 because of the spin–orbit coupling effect. © 2013 Wiley Periodicals, Inc.  相似文献   
160.
A novel, water-soluble, cationic PPV derivative poly[(2,5-bis(3-bromotrimethylammoniopropoxy)-phenylene-1,4-divinylene)-alt-1,4-(2,5-bis(2-(2-hydroxyethoxy)ethoxy))phenylene vinylene] (BH-PPV) has been synthesized by a Heck coupling reaction. Multilayered assemblies of the BH-PPV and the sodium salt of hexa(sulfobutyl)fullerenes (C(60)-HS) were fabricated successfully by an alternate deposition technique. The multilayer structures were studied by UV/Vis spectroscopy, small angle X-ray diffraction, and atomic force microscopy. The photoinduced charge transfer property of the self-assembled multilayer film was also measured by a three-electrode cell technique. A steady and rapid cathodic 5.5 microA cm(-2) photocurrent response was measured as the irradiation of the multilayer film was switched on and off. Importantly, the response of on/off cycling is prompt and reproducible. A possible mechanism for the electron-transfer process is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号