首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1690篇
  免费   152篇
  国内免费   147篇
化学   1492篇
晶体学   17篇
力学   48篇
综合类   11篇
数学   106篇
物理学   315篇
  2024年   5篇
  2023年   35篇
  2022年   99篇
  2021年   81篇
  2020年   105篇
  2019年   83篇
  2018年   82篇
  2017年   48篇
  2016年   113篇
  2015年   116篇
  2014年   118篇
  2013年   128篇
  2012年   138篇
  2011年   161篇
  2010年   105篇
  2009年   103篇
  2008年   100篇
  2007年   82篇
  2006年   77篇
  2005年   68篇
  2004年   46篇
  2003年   40篇
  2002年   5篇
  2001年   9篇
  2000年   5篇
  1999年   8篇
  1998年   7篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   7篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1986年   1篇
  1959年   1篇
排序方式: 共有1989条查询结果,搜索用时 15 毫秒
81.
Biomimetic electrochemical sensors are very promising not only due to their lower expense and longer stability than conventional enzymatic ones, but they also often suffer from simultaneously achieving high sensitivity and good selectivity. Here we present a well-defined Au@Co3O4/CeO2 yolk-shell nanostructure (YSN) that is first synthesized and exploited as highly efficient electrocatalysts for hydrogen peroxide (H2O2) detection. The introduced CeO2 in Co3O4 matrix greatly facilitates the migration of lattice oxygen, which increases the concentration of surface oxygen vacancies (Oa), remarkably enhancing the adsorption ability of H2O2 and promoting the decomposition of H2O2 for faster electron transfer than pristine Au@Co3O4 core-shell nanostructure (CSN). The abundant Oa of Au@Co3O4/CeO2 YSN is confirmed by X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The as-prepared biomimetic sensor delivers a wide dynamic range (5.0 nM to 5.4 μM), a low limit of detection (LOD) (2.74 nM), and a high sensitivity (35.67 μA μM−1 cm−2), paving a new way to construct an ultrasensitive and selective enzyme-free biomimetic electrochemical sensor. Furthermore, the sensor is used to real-time monitor H2O2 released from human cervical cancer cells (HeLa) and human umbilical vein endothelial cells (HUVEC), demonstrating its great potential in practical applications.  相似文献   
82.
采用Monte Carlo模拟方法研究了疏水-亲水-疏水(H-P-H)型ABC三嵌段共聚物在B嵌段的选择性溶剂中的自组装行为. 模拟结果表明, 通过调节A嵌段和C嵌段的疏水性和二者之间的不相容性, 体系中可以形成多种形貌各异的胶束. 根据胶束中疏水核结构的特点, 这些胶束大体上可以被分为多核型胶束和多间隔型胶束两种类型. 通过增强疏水嵌段的疏水性或降低A嵌段和C嵌段间的不相容性, H-P-H型ABC三嵌段共聚物胶束能够发生从多核型胶束向多间隔型胶束的转变. 进一步分析胶束中聚合物的链构象等微观结构信息发现, A嵌段和C嵌段间的排斥作用和疏水作用之间存在竞争关系, 而这种竞争关系是影响体系中形成多核型胶束还是多间隔型胶束的决定性因素.  相似文献   
83.
This study was to investigate the optimal additions of the cellulose decomposition reaction to obtain the most yield of 5-HMF and other furan derivatives in various biphasic systems with FeCl_3-CuCl_2 mixed catalysts,and explore its depolymerization kinetics.A series of controllable reactions have been performed under mild environmentally friendly atmosphere.The experiment results showed that49.13 wt% of 5-HMF was the maximum production along with 2.98 wt% other furan derivatives catalyzed by mixed Lewis acid FeCl_3-CuCl_2 under the two phases which included high concentration NaCl aqueous phase and n-butanol organic phase at 190℃ for 45 min.The conclusion suggested that two-phase systems benefited the yield of 5-HMF,furan derivatives via extracting the target products from reaction phase to organic phase to avoid rehydration of 5-HMF.The kinetic calculation revealed the conversion with mixed catalysts had lower reaction apparent activation energy(21.65 kJ/mol,190-230℃) and the reaction rate was faster than that with acid-based catalysts.Based on experiment exploration,the probable mechanism of cellulose decomposition with FeCl_3-CuCl_2 was proposed.  相似文献   
84.
We report the electron paramagnetic resonance (EPR) studies of MgTi2O4 in the 300–140 K range. Above the transition temperature T t (~258 K), the EPR results indicate that MgTi2O4 is paramagnetic. The parameters of the EPR spectra show an anomalous change at T t. The clear EPR lines can be observed in temperature between T t and 220 K. Besides that the EPR intensity, g value, and EPR linewidth increase with decreasing temperature; in temperature range below 220 K, no clear EPR line can be detected. The EPR spectra results demonstrate that magnetic spin-singlet state and the orbital density wave of MgTi2O4 system are formed gradually with decreasing temperature at low temperature range.  相似文献   
85.
By exploiting the electrostatic interaction between positively charged 3,4‐ethylenedioxythiophene cation radicals and negatively charged sulfonated graphene (SG) sheets, we prepared a poly(3,4‐ethylenedioxythiophene)‐sulfonated graphene (SG‐PEDOT) composite film by a one‐step electrochemical process. The composite was further decorated with gold nanoparticles (AuNPs) and employed as an electrode material for the detection of L ‐cysteine (Cys). The SG‐PEDOT composite film is shown to provide a rough surface for the electrodeposition of AuNPs and to improve substrate accessibility and interaction with Cys. Moreover, the AuNPs‐decorated composite exhibits better electrocatalytic performance than that of a SG‐PEDOT composite only. Under optimum experimental conditions, the amperometric current of the sensor is linearly related to the concentration of Cys in the 0.1 to 382 µM range, and the detection limit is 0.02 µM (at S/N=3). The modified electrode displays favorable selectivity, good stability and high reproducibility. The method was successfully applied to the detection of Cys in spiked human urine.  相似文献   
86.
Direct reductive methylation of peptides is a common method for quantitative proteomics. It is an active derivatization technique; with participation of the dimethylamino group, the derivatized peptides preferentially release intense a1 ions. The advantageous generation of a1 ions for quantitative proteomic profiling, however, is not desirable for targeted proteomic quantitation using multiple reaction monitoring mass spectrometry; this mass spectrometric method prefers the derivatizing group to stay with the intact peptide ions and multiple fragments as passive mass tags. This work investigated collisional fragmentation of peptides whose amine groups were derivatized with five linear ω-dimethylamino acids, from 2-(dimethylamino)-acetic acid to 6-(dimethylamino)-hexanoic acid. Tandem mass spectra of the derivatized tryptic peptides revealed different preferential breakdown pathways. Together with energy resolved mass spectrometry, it was found that shutting down the active participation of the terminal dimethylamino group in fragmentation of derivatized peptides is possible. However, it took a separation of five methylene groups between the terminal dimethylamino group and the amide formed upon peptide derivatization. For the first time, the gas-phase fragmentation of peptides derivatized with linear ω-dimethylamino acids of systematically increasing alkyl chain lengths is reported. Figure
?  相似文献   
87.
The coupling of aryldiazonium tetrafluoroborates, DABCO?(SO2)2, and hydrazines under metal‐free conditions leads to the formation of aryl N‐aminosulfonamides. The reaction proceeds smoothly at room temperature and shows broad functional‐group tolerance. A radical process is proposed for this transformation.  相似文献   
88.
DNA-modified lanthanide-doped upconversion nanoparticles (DNA-UCNPs) that combine the functions of DNA and the optical features of UCNPs have shown great promise in a wide range of fields. However, challenges remain in precisely tethering and orienting the DNA strands on the UCNP surface. Herein, we systematically investigate the sequence dependence of DNAs in their interactions with UCNPs, and reveal that poly-cytosine (poly-C) has high affinity for the UCNP surface. A general approach to synthesize monodispersed DNA-UCNP conjugates is developed using poly-C-containing diblock DNA strands. The poly-C segment of the DNA strand binds to the surfaces of UCNPs and the second segment is oriented perpendicularly on the UCNP surface, making the DNA-UCNPs highly stable and monodispersed in aqueous solution. The dense layer of DNA on the UCNP surface enables the programmable assembly of UCNPs with other DNA-functionalized nanoparticles or DNA origamis through hybridization, resulting in the formation of well-organized complex structures.  相似文献   
89.
Triazole-based deubiquitylase (DUB)-resistant ubiquitin (Ub) probes have recently emerged as effective tools for the discovery of Ub chain-specific interactors in proteomic studies, but their structural diversity is limited. A new family of DUB-resistant Ub probes is reported based on isopeptide-N-ethylated dimeric or polymeric Ub chains, which can be efficiently prepared by a one-pot, ubiquitin-activating enzyme (E1)-catalyzed condensation reaction of recombinant Ub precursors to give various homotypic and even branched Ub probes at multi-milligram scale. Proteomic studies using label-free quantitative (LFQ) MS indicated that the isopeptide-N-ethylated Ub probes may complement the triazole-based probes in the study of Ub interactome. Our study highlights the utility of modern protein synthetic chemistry to develop structurally and new families of tool molecules needed for proteomic studies.  相似文献   
90.
Osmotic energy, obtained through different concentrations of salt solutions, is recognized as a form of a sustainable energy source. In the past years, membranes derived from asymmetric aromatic compounds have attracted attention because of their low cost and high performance in osmotic energy conversion. The membrane formation process, charging state, functional groups, membrane thickness, and the ion-exchange capacity of the membrane could affect the power generation performance. Among asymmetric membranes, a bipolar membrane could largely promote the ion transport. Here, two polymers with the same poly(ether sulfone) main chain but opposite charges were synthesized to prepare bipolar membranes by a nonsolvent-induced phase separation (NIPS) and spin-coating (SC) method. The maximum power density of the bipolar membrane reaches about 6.2 W m−2 under a 50-fold salinity gradient, and this result can serve as a reference for the design of bipolar membranes for osmotic energy conversion systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号