全文获取类型
收费全文 | 655932篇 |
免费 | 9741篇 |
国内免费 | 6248篇 |
专业分类
化学 | 324686篇 |
晶体学 | 8990篇 |
力学 | 35980篇 |
综合类 | 339篇 |
数学 | 106015篇 |
物理学 | 195911篇 |
出版年
2021年 | 6554篇 |
2020年 | 7130篇 |
2019年 | 7900篇 |
2018年 | 19579篇 |
2017年 | 19288篇 |
2016年 | 19185篇 |
2015年 | 8750篇 |
2014年 | 13056篇 |
2013年 | 27026篇 |
2012年 | 25284篇 |
2011年 | 34847篇 |
2010年 | 24230篇 |
2009年 | 24480篇 |
2008年 | 29451篇 |
2007年 | 30940篇 |
2006年 | 21211篇 |
2005年 | 19906篇 |
2004年 | 18690篇 |
2003年 | 17375篇 |
2002年 | 16488篇 |
2001年 | 16465篇 |
2000年 | 12820篇 |
1999年 | 9944篇 |
1998年 | 8746篇 |
1997年 | 8392篇 |
1996年 | 7942篇 |
1995年 | 7083篇 |
1994年 | 7088篇 |
1993年 | 6800篇 |
1992年 | 7044篇 |
1991年 | 7513篇 |
1990年 | 7221篇 |
1989年 | 7058篇 |
1988年 | 6804篇 |
1987年 | 6574篇 |
1986年 | 6314篇 |
1985年 | 7881篇 |
1984年 | 8201篇 |
1983年 | 6929篇 |
1982年 | 7195篇 |
1981年 | 6668篇 |
1980年 | 6337篇 |
1979年 | 6886篇 |
1978年 | 7120篇 |
1977年 | 6990篇 |
1976年 | 7020篇 |
1975年 | 6695篇 |
1974年 | 6519篇 |
1973年 | 6858篇 |
1972年 | 5077篇 |
排序方式: 共有10000条查询结果,搜索用时 37 毫秒
81.
Strain hardening of polycarbonate in the glassy state: Influence of temperature and molecular weight
L. E. Govaert T. A. Tervoort 《Journal of polymer science. Part A, Polymer chemistry》2004,42(11):2041-2049
This study is concerned with the temperature and molecular weight dependence of the strain-hardening behavior of polycarbonate. It is shown that the strain-hardening modulus reduces with increasing temperature and decreasing molecular weight. This result is interpreted in terms of temperature accelerated relaxation of the entanglement network. Moreover, it is shown that frozen-in orientations, induced by homogeneous deformations above the glass transition temperature, lead to anisotropic yield behavior that can be fully rationalized (and modelled) in terms of a superimposed stress contribution of the prestrained network. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2041–2049, 2004 相似文献
82.
Accreditation and Quality Assurance - 相似文献
83.
Chin‐Ping Yang Sheng‐Huei Hsiao Che‐Yu Tsai Guey‐Sheng Liou 《Journal of polymer science. Part A, Polymer chemistry》2004,42(10):2416-2431
Two series of fluorinated polyimides were prepared from 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)biphenyl ( 2 ) and 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐1,1′‐binaphthyl ( 4 ) with various aromatic dianhydrides via a conventional, two‐step procedure that included a ring‐opening polyaddition to give poly(amic acid)s, followed by chemical or thermal cyclodehydration. The inherent viscosities of the polyimides ranged from 0.54 to 0.73 and 0.19 to 0.36 dL/g, respectively. All the fluorinated polyimides were soluble in many polar organic solvents, such as N,N‐dimethylacetamide and N‐methylpyrrolidone, and afforded transparent and light‐colored films via solution‐casting. These polyimides showed glass‐transition temperatures in the ranges of 222–280 and 257–351 °C by DSC, softening temperatures in the range of 264–301 °C by thermomechanical analysis, and a decomposition temperature for 10% weight loss above 520 °C both in nitrogen and air atmospheres. The polyimides had low moisture absorptions of 0.23–0.58%, low dielectric constants of 2.84–3.61 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 351–434 nm. Copolyimides derived from the same dianhydrides with an equimolar mixture of 4,4′‐oxydianiline and diamine 2 or 4 were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2416–2431, 2004 相似文献
84.
Gottfried Mayer Vitali Vogel Bas G. G. Lohmeijer Jean‐Franois Gohy Jacomina A. Van Den Broek Winfried Haase Ulrich S. Schubert Dieter Schubert 《Journal of polymer science. Part A, Polymer chemistry》2004,42(17):4458-4465
Micelles prepared from amphiphilic block copolymers in which a poly(styrene) segment is connected to a poly(ethylene oxide) block via a bis‐(2,2′:6′,2″‐terpyridine‐ruthenium) complex have been intensely studied. In most cases, the micelle populations were found to be strongly heterogeneous in size because of massive micelle/micelle aggregation. In the study reported in this article we tried to improve the homogeneity of the micelle population. The variant preparation procedure developed, which is described here, was used to prepare two “protomer”‐type micelles: PS20‐[Ru]‐PEO70 and PS20‐[Ru]‐PEO375. The dropwise addition of water to a solution of the compounds in dimethylformamide was replaced by the controlled addition of water by a syringe pump. The resulting micelles were characterized by sedimentation velocity and sedimentation equilibrium analyses in an analytical ultracentrifuge and by transmission electron microscopy of negatively stained samples. Sedimentation analysis showed virtually unimodal size distributions, in contrast to the findings on micelles prepared previously. PS20‐[Ru]‐PEO70 micelles were found to have an average molar mass of 318,000 g/mol (corresponding to 53 protomers per micelle, which is distinctly less than after micelle preparation by the standard method) and an average hydrodynamic diameter (dh) of 18 nm. For PS20‐[Ru]‐PEO375 micelles, the corresponding values were M = 603,000 g/mol (31 protomers per micelle) and dh = 34 nm. The latter particles were found to be identical to the “equilibrium” micelles prepared in pure water. Both micelle types had a very narrow molar mass distribution but a much broader distribution of s values and thus of hydrodynamic diameters. This indicates a conformational heterogeneity that is stable on the time scale of sedimentation velocity analysis. The findings from electron microscopy were in disagreement with those from the sedimentation analysis both in average micelle diameter and in the width of the distributions, apparently because of imperfections in the staining procedure. The preparation procedure described also may be useful in micelle formation from other types of protomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4458–4465, 2004 相似文献
85.
X. H. Li Y. Z. Meng S. J. Wang A. Varada Rajulu S. C. Tjong 《Journal of Polymer Science.Polymer Physics》2004,42(4):666-675
The composites of biodegradable poly(propylene carbonate) (PPC) reinforced with short Hildegardia populifolia natural fiber were prepared by melt mixing followed by compression molding. The mechanical properties, thermal properties, and morphologies of the composites were studied via static and dynamic mechanical measurements, thermogravimetric analysis, and scanning electron microscopy (SEM) techniques, respectively. Static tensile tests showed that the stiffness and tensile strength of the composites increased with an increasing fiber content. However, the elongation at break and the energy to break decreased dramatically with the addition of short fiber. The relationship between the experimental results and the compatibility or interaction between the PPC matrix and fiber was correlated. SEM observations indicated good interfacial contact between the short fiber and PPC matrix. Thermogravimetric analysis revealed that the introduction of short Hildegardia populifolia fiber led to a slightly improved thermooxidative stability of PPC. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 666–675, 2004 相似文献
86.
87.
A. Zubeldia M. Larraaga P. Remiro I. Mondragon 《Journal of Polymer Science.Polymer Physics》2004,42(21):3920-3933
The microstructure and fracture behavior of epoxy mixtures containing two monomers of different molecular weights were studied. The variation of the fracture toughness by the addition of other modifiers was also investigated. Several amounts of high‐molecular‐weight diglycidyl ether of bisphenol A (DGEBA) oligomer were added to a nearly pure DGEBA monomer. The mixtures were cured with an aromatic amine, showing phase separation after curing. The curing behavior of the epoxy mixtures was investigated with thermal measurements. A significant enhancement of the fracture toughness was accompanied by slight increases in both the rigidity and strength of the mixtures that corresponded to the content of the high‐molecular‐weight epoxy resin. Dynamic mechanical and atomic force microscopy measurements indicated that the generated two‐phase morphology was a function of the content of the epoxy resin added. The influence of the addition of an oligomer or a thermoplastic on the morphologies and mechanical properties of both epoxy‐containing mixtures was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3920–3933, 2004 相似文献
88.
E.‐A. McGonigle J. J. Liggat R. A. Pethrick S. D. Jenkins J. H. Daly D. Hayward 《Journal of Polymer Science.Polymer Physics》2004,42(15):2916-2929
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004 相似文献
89.
Large melting point depressions for organic nanocrystals, in comparison with those of the bulk, were observed in an associative polymer: telechelic, pyrene‐labeled poly(dimethylsiloxane) (Py‐PDMS‐Py). Nanocrystals formed within nanoaggregates of pyrenyl units that were immiscible in poly(dimethylsiloxane). For 5 and 7 kg/mol Py‐PDMS‐Py, physical gels resulted, with melting points exceeding 40 °C and with small‐angle X‐ray scattering peaks indicating that the crystals were nanoconfined, were 2–3 nm long, and contained roughly 18–30 pyrenyl dye end units. In contrast, 30 kg/mol Py‐PDMS‐PY was not a gel and exhibited no scattering peak at room temperature; however, after 12 h of annealing at ?5 °C, multiple melting peaks were present at 5–30 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3470–3475, 2004 相似文献
90.
A reliable method is presented for the chiral separation of three basic drugs (mexiletine, chlorpheniramine and propranolol) with serum albumins (human and porcine, HSA and PSA) as chiral selectors by capillary electrophoresis in combination with the partial filling technique. Based on the systematic optimization of operation variables, the chiral separation of mexiletine, chlorpheniramine and propranolol was achieved in the pH 7.4 phosphate buffer by using HSA, PSA and PSA as selectors, respectively. The chiral recognition ability of HSA and PSA was compared. HSA and PSA show a different chiral recognition ability for each of the three drugs. In addition, the association constants between enantiomeric drugs and proteins were determined to be 2.00 and 3.80 x 10(2) M(-1) for mexiletine and HSA, 0.59 and 1.12 x 10(3) M(-1) for chlorpheniramine and PSA, and 0.87 and 1.42 x 10(3) M(-1) for propranolol and PSA. The method for the chiral separation and determination of association constants possesses the advantages of simple performance, effective avoiding of the interference of the UV detection from protein, and lowering of the reagent consumption. 相似文献