首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154502篇
  免费   18093篇
  国内免费   8851篇
化学   109701篇
晶体学   1900篇
力学   7655篇
综合类   505篇
数学   16820篇
物理学   44865篇
  2023年   1229篇
  2022年   2063篇
  2021年   2957篇
  2020年   4308篇
  2019年   5619篇
  2018年   4519篇
  2017年   4144篇
  2016年   7592篇
  2015年   6589篇
  2014年   7784篇
  2013年   10283篇
  2012年   9978篇
  2011年   9693篇
  2010年   8424篇
  2009年   8344篇
  2008年   8237篇
  2007年   7251篇
  2006年   6517篇
  2005年   5999篇
  2004年   5124篇
  2003年   4526篇
  2002年   5387篇
  2001年   4346篇
  2000年   3701篇
  1999年   2532篇
  1998年   2065篇
  1997年   1839篇
  1996年   1759篇
  1995年   1470篇
  1994年   1507篇
  1993年   1364篇
  1992年   1341篇
  1991年   1360篇
  1990年   1300篇
  1989年   1195篇
  1988年   1021篇
  1987年   1030篇
  1986年   977篇
  1985年   1012篇
  1984年   962篇
  1983年   873篇
  1982年   838篇
  1979年   810篇
  1978年   818篇
  1977年   809篇
  1976年   928篇
  1975年   823篇
  1974年   842篇
  1973年   846篇
  1972年   755篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
131.
Functional, degradable polymers were synthesized via the copolymerization of vinyl acetate (VAc) and 2‐methylene‐1,3‐dioxepane (MDO) using a macro‐xanthate CTA, poly(N‐vinylpyrrolidone), resulting in the formation of amphiphilic block copolymers of poly(NVP)‐b‐poly(MDO‐co‐VAc). The behavior of the block copolymers in water was investigated and resulted in the formation of self‐assembled nanoparticles containing a hydrophobic core and a hydrophilic corona. The size of the resultant nanoparticles was able to be tuned with variation of the hydrophilic and hydrophobic segments of the core and corona by changing the incorporation of the macro‐CTA as well as the monomer composition in the copolymers, as observed by Dynamic Light Scattering, Static Light Scattering, and Transmission Electron Microscopy analyses. The concept was further applied to a VAc derivative monomer, vinyl bromobutanoate, to incorporate further functionalities such as fluorescent dithiomaleimide groups throughout the polymer backbone using azidation and “click” chemistry as postpolymerization tools to create fluorescently labeled nanoparticles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2699–2710  相似文献   
132.

The behavior of group-4 homologs Zr and Hf on extraction-chromatographic sorbents LN resin and TRU resin in mixtures of HF and HNO3 is considered. Distribution coefficients of the elements in the mixtures of 5·10−4 M–1 M HF and 0.01 M–5 M HNO3 are determined. Strong retention of both elements was found on LN resin in the range of concentrations c(HF) ≤ 0.01 M for all concentrations of HNO3. Retention tends to gradually disappear while increasing c(HF) to 0.5 M. On TRU resin retention is observed only in solutions with c(HNO3) ≥ 2 M and c(HF) ≤ 0.01 M. The possibility of separating Zr(IV) and Hf(IV) on LN resin is illustrated in two different acid mixtures, whereas their separation on TRU resin under the conditions studied in this work is difficult. The results obtained can be used to isolate analytes from multicomponent mixtures during analytical tasks, as well as to separate them from each other.

  相似文献   
133.
134.
135.
The intermolecular interaction determines the photophysical properties of the organic aggregates, which are critical to the performance of organic photovoltaics. Here, excitonic coupling, an important intermolecular interaction in organic aggregates, between the π-stacking graphene quantum dots is studied by using transient absorption spectroscopy. We find that the spectral evolution of the ground state bleach arises from the dynamic variation of the excitonic coupling in the excited π-stacks. According to the spectral simulations, we demonstrate that the kinetics of the vibronic peak can be exploited as a probe to measure the dynamics of excitonic coupling in the excited π-stacks.  相似文献   
136.
New thiazole derivatives were synthesized and fully characterized, then coordinated with PtCl4 salt. Also, the newly synthesized Pt(IV) complexes were investigated analytically (elemental and thermogravimetric analyses), spectrally (infrared, UV–visible, mass, 1H NMR, 13C NMR, X‐ray diffraction) as well as theoretically (kinetics, modeling and docking). The data extracted led to the establishment of the best chemical and structural forms. Octahedral geometry was the only formula proposed for all complexes, which is favorable for d6 systems. The molecular ion peaks from mass spectral analysis coincide with all analytical data, confirming the molecular formula proposed. X‐ray diffraction (XRD) and scanning electron microscopy (SEM) allowed discrimination of features between crystalline particles and other amorphous morphology. By applying Gaussian09 as well as HyperChem 8.2 programs, the best structural forms were obtained, as well as computed significant parameters. Computed parameters such as softness, hardness, surface area and reactivity led us towards application in two opposing pathways: tumor inhibition and oxidation activation. The catalytic oxidation for CO was conducted over PtO2, which was yielded from calcination of the most reactive complex. The success of catalytic role for synthesized PtO2 was due to its particulate size and surface morphology, which were estimated from XRD patterns and SEM images, respectively. The antitumor activity was tested versus HCT‐116 and HepG‐2 cell lines. Mild toxicity was recorded for two of the derivatives and their corresponding complexes. This degree of toxicity is more favorable in most cases, due to exclusion of serious side effects, which is coherently attached with known antitumor drugs.  相似文献   
137.
Balanophora involucrata J. D. Hooker has been known to possess potential anti-inflammatory and antibacterial activities; however, its antiviral activity has not been evaluated so far. In order to find new neuraminidase inhibitors (NAIs), the neuraminidase (NA) inhibition activity of different B. involucrata extracts was evaluated. In this study, an in vitro NA inhibition assay was performed to identify which extract of B. involucrata exhibits (maximal) inhibitory activity against NA. Ultra high performance liquid chromatography/quadrupole time-of-flight–tandem mass spectroscopy (MS/MS) and molecular docking techniques were used to identify the specific compounds responsible for the anti-influenza activity of the extract, and to explore the potential natural NAIs. The ethyl acetate extract of B. involucrata exhibited significant inhibitory activity against NA with 50% inhibitory concentration (IC50) value of 159.5 μg/mL. Twenty compounds were identified according to the MS/MS spectra; among them two compounds (quercitrin and phloridzin) showed obvious inhibitory activity against NA, with IC50 of 311.76 and 347.32 μmol/L, respectively. This study suggested that B. involucrata can be a potential natural source of NAIs and may be useful in the fight against ferocious influenza viruses.  相似文献   
138.
139.
Enhancement of spontaneous emission in a resonant Bragg quantum well (QW) structure with 60 periods of triple InAs monolayers embedded in a GaAs matrix is studied experimentally and theoretically. From measurements of the time‐resolved photoluminescence, besides the QW exciton at 1.47 eV, a specific super‐radiant (SR) emission demonstrating nonlinear properties is found. The SR mode shows a near‐quadratic dependence of intensity on excitation power, while its energy position follows the Bragg condition. It is revealed that the SR mode shows a peculiar non‐monotonic dependence of intensity on direction, with a maximum observed at approximately 40°. The enhancement in the SR emission at a specific direction is correlated well with suggested theoretical consideration of the modal Purcell factor for periodic quantum well structures.  相似文献   
140.
Developing clean and sustainable energies as alternatives to fossil fuels is in strong demand within modern society. The oxygen evolution reaction (OER) is the efficiency-limiting process in plenty of key renewable energy systems, such as electrochemical water splitting and rechargeable metal–air batteries. In this regard, ongoing efforts have been devoted to seeking high-performance electrocatalysts for enhanced energy conversion efficiency. Apart from traditional precious-metal-based catalysts, nickel-based compounds are the most promising earth-abundant OER catalysts, attracting ever-increasing interest due to high activity and stability. In this review, the recent progress on nickel-based oxide and (oxy)hydroxide composites for water oxidation catalysis in terms of materials design/synthesis and electrochemical performance is summarized. Some underlying mechanisms to profoundly understand the catalytic active sites are also highlighted. In addition, the future research trends and perspectives on the development of Ni-based OER electrocatalysts are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号