首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   0篇
化学   42篇
物理学   17篇
  2020年   1篇
  2017年   2篇
  2016年   2篇
  2015年   9篇
  2014年   7篇
  2013年   4篇
  2012年   4篇
  2011年   4篇
  2010年   6篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2004年   3篇
  2003年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1990年   1篇
排序方式: 共有59条查询结果,搜索用时 281 毫秒
21.
Stachybotrys microspora is a filamentous fungus secreting multiple β-glucosidases. Two of them were characterized. The third one, named bglG, was also characterized and used for various investigations. The current work undertakes the plausible role played by some cultural conditions and physico-chemical properties to improve bglG time course synthesis and also its catalytic efficiency. Indeed, bglG time course synthesis is slightly affected by light, but it is clearly affected by aeration and presence of baffle. On the same case, optimization of substrate and enzyme concentration contributes to the improvement of the catalytic efficiency of bglG. This biocatalyst tolerates a high ionic strength during its activity assay; β-mercaptoethanol increases the enzymatic rate. BglG has the capacity to hydrolyse efficiently oleuropéin, with a recovery of 88 %.  相似文献   
22.
23.
The present paper accounts for the synthesis, crystal structure, differential scanning calorimetry, vibrational study, and electrical properties of the [N(C3H7)4]2Zn2Cl6 compound. The latter is crystallized at room temperature in the triclinic system ( $ P\overline{1} $ space group) with the following unit cell parameters: a?=?13.736(2)Å, b?=?17.044(3)Å, c?=?17.334(2)Å, α?=?68.30(2)°, β?=?75.14(2)°, and γ?=?84.93(3). The atomic arrangement can be described by alternating organic and inorganic layers parallel to the (001) plan, made up of [N(C3H7)4]+ groups and [Zn2Cl6]2? dimers, respectively. In crystal structure, the inorganic layer, built up by Zn2Cl6 dimers, is connected to the organic ones through van der Waals interaction in order to build cation–anion–cation cohesion. The infrared and Raman studies confirm the presence of the organic group tetrapropylammonium and the Zn2Cl6 anion. Concerning the differential scanning calorimetry, it revealed two reversible solid–solid phase transitions of first order: at 327/324 K and 347/343 K (heating/cooling). Besides, the impedance spectroscopy study, reported in the sample, reveals that the conduction in the material is due to a hopping process. Regarding the temperature dependence of the dc conductivity, it suggests Arrhenius type: σ dc T?=?B ?exp(?E a /kT). The tetrapropylammonium cations appeared to be the most sensitive to the phase transition.  相似文献   
24.
Effects of spatial ordering of molecules on surfaces are commonly utilized to deposit ultra-thin films with a thickness of a few nm. In this review paper, several methods are discussed, that are distinguished from other thin film deposition processes by exactly these effects that lead to self-assembling and self-limiting layer growth and eventually to coatings with unique and fascinating properties and applications in micro-electronics, optics, chemistry, or biology. Traditional methods for the formation of self-assembled films of ordered organic molecules, such as the Langmuir-Blodgett technique along with thermal atomic layer deposition (ALD) of inorganic molecules are evaluated. The overview is complemented by more recent developments for the deposition of organic or hybrid films by molecular layer deposition. Particular attention is given to plasma assisted techniques, either as a preparative, supplementary step or as inherent part of the deposition as in plasma enhanced ALD or plasma assisted, repeated grafting deposition. The different methods are compared and their film formation mechanisms along with their advantages are presented from the perspective of a plasma scientist. The paper contains lists of established film compounds and a collection of the relevant literature is provided for further reading.  相似文献   
25.
The aim of the present study was to investigate pectinases production by CT1 mutant of Penicillium occitanis on glucose based media. Two main groups of pectinases were followed: lyases (pectin and pectate lyases) and hydrolases (polygalacturonases and polymethylgalacturonases). When cultivated in different liquid media, where either the starting glucose concentration or the nature of nitrogen sources used was varied, the CT1 mutant secreted either lyases or hydrolases. In fact, the pH of these various media seemed to correlate with the activity produced: The lyases were highly and exclusively produced at neutral or alkaline ambient pH, whereas hydrolases were highly produced on acidic ambient pH. Such conclusion was confirmed by following pectinase production in the same culture medium (with the same glucose concentration and the same nitrogen source) set at two initial pH of 4 and 7. Altogether, these results suggest that the pectinases control by PacC signaling pathway of P. occitanis should resemble to that of Aspergillus and its ability to “activate the expression of alkaline-expressed genes and repress acid-expressed genes” remains intact in the CT1 over-producing and constitutive strain. Enzymes produced at acidic pH (hydrolases) and at neutral pH (lyases) were applied in the hydrolysis of orange peel and gave results comparable to commercial enzymes.  相似文献   
26.
Stachybotrys microspora is a filamentous fungus characterized by the secretion of multiple hydrolytic activities (cellulolytic and non-cellulolytic enzymes). The production of these biocatalysts was studied under submerged culture using glucose, cellulose, and wheat bran as carbon sources. Endoglucanases, pectinases, xylanases, β-glucanases, chitinases, and proteases were induced on cellulose-based medium and repressed on glucose in both strains with higher amounts produced by the mutant. β-glucosidases were roughly equally produced by both strains under glucose and cellulose conditions. The yield of chitinases, β-glucanases, and proteases produced by Stachybotrys strains was as much higher than the commercialized lysing enzyme called “zymolyase,” currently used in yeast DNA extraction. In this context, we showed that S. microspora hydrolases can be successfully applied in the extraction of yeast DNA.  相似文献   
27.
Using emulsified triacylglycerols, we have shown recently [Mosbah et al., 2007, submitted for publication] that amino acid residue G311 of Staphylococcus xylosus lipase (SXL) is critically involved in substrate selectivity, pH and temperature dependency. Using the monomolecular film technique, we show in the present study that the four single mutants of this residue (G311L, G311W, G311D, and G311K), interact efficiently with egg-phosphatidyl choline (egg-PC) monomolecular films, comparably to the wild-type (G311). A critical surface pressure (pi(c)) of about 25 mN/m was obtained with the SXL wild-type (SXL-WT) and its mutants. These results support our conclusion that the G311 residue is not involved in the interfacial adsorption step of SXL. A kinetic study on the surface pressure dependency, stereoselectivity, and regioselectivity of SXL-WT and its G311 mutants was also performed using optically pure enantiomers of diacylglycerols (1,2-sn-dicaprin and 2,3-sn-dicaprin) and a prochiral isomer (1,3-sn-dicaprin) spread as monomolecular films at the air-water interface. Our results indicated that the mutation of one single residue at position 311 affects critically the catalytic activity, the stereo- and the regioselectivity of SXL. As previously observed with emulsified substrates [Mosbah et al., 2007, submitted for publication] we observed that an increase in the size of the 311 amino acid side chain residue was accompanied by a decrease of lipase activity measured on dicaprin monolayer. We also noticed that the substitution of G311 by a basic or acidic residue (G311K and G311D), induces a significant shift of the pH optimum from 8 to 9.5 or from 8 to 6.5, respectively.  相似文献   
28.
Essential oils isolated from needles of Pinus patula by hydrodistillation were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography mass spectrometry (GC-MS). Thirty-eight compounds were identified, representing 98.3% of the total oil. The oil was rich in monoterpene hydrocarbons (62.4%), particularly alpha-pinene (35.2%) and beta-phellandrene (19.5%). The in vitro antifungal assay showed that P. patula oil significantly inhibited the growth of 9 plant pathogenic fungi. The oil, when tested on Sinapis arvensis, Lolium rigidum, Phalaris canariensis and Trifolium campestre, completely inhibited seed germination and seedling growth of all species. Our preliminary results showed that P. patula essential oil could be valorized for the control of weeds and fungal plant diseases.  相似文献   
29.
An extracellular thermostable xylanase from a newly isolated thermophilic Actinomadura sp. strain Cpt20 was purified and characterized. Based on matrix-assisted laser desorption–ionization time-of-flight mass spectrometry analysis, the purified enzyme is a monomer with a molecular mass of 20,110.13 Da. The 19 residue N-terminal sequence of the enzyme showed 84% homology with those of actinomycete endoxylanases. The optimum pH and temperature values for xylanase activity were pH 10 and 80 °C, respectively. This xylanase was stable within a pH range of 5–10 and up to a temperature of 90 °C. It showed high thermostability at 60 °C for 5 days and half-life times at 90 °C and 100 °C were 2 and 1 h, respectively. The xylanase was specific for xylans, showing higher specific activity on soluble oat-spelt xylan followed by beechwood xylan. This enzyme obeyed the Michaelis–Menten kinetics, with the K m and k cat values being 1.55 mg soluble oat-spelt xylan/ml and 388 min−1, respectively. While the xylanase from Actinomadura sp. Cpt20 was activated by Mn2+, Ca2+, and Cu2+, it was, strongly inhibited by Hg2+, Zn2+, and Ba2+. These properties make this enzyme a potential candidate for future use in biotechnological applications particularly in the pulp and paper industry.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号