首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40088篇
  免费   8358篇
  国内免费   1438篇
化学   43587篇
晶体学   350篇
力学   515篇
数学   2381篇
物理学   3051篇
  2023年   29篇
  2022年   90篇
  2021年   250篇
  2020年   1287篇
  2019年   2629篇
  2018年   1070篇
  2017年   701篇
  2016年   3470篇
  2015年   3618篇
  2014年   3535篇
  2013年   4274篇
  2012年   3199篇
  2011年   2464篇
  2010年   3006篇
  2009年   2922篇
  2008年   2592篇
  2007年   1933篇
  2006年   1657篇
  2005年   1806篇
  2004年   1600篇
  2003年   1455篇
  2002年   2107篇
  2001年   1409篇
  2000年   1321篇
  1999年   404篇
  1998年   83篇
  1997年   73篇
  1996年   62篇
  1995年   52篇
  1994年   50篇
  1993年   33篇
  1992年   32篇
  1991年   26篇
  1990年   39篇
  1989年   36篇
  1988年   29篇
  1987年   24篇
  1986年   19篇
  1985年   45篇
  1984年   30篇
  1983年   24篇
  1982年   27篇
  1981年   27篇
  1980年   20篇
  1979年   31篇
  1978年   19篇
  1977年   26篇
  1976年   23篇
  1975年   19篇
  1973年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A family of energetic salts with high thermal stability and low impact sensitivity based on an oxygen‐containing cation, 2,4‐diamino‐1,3,5‐triazine‐6‐one, were synthesized and fully characterized by IR and multinuclear (1H, 13C) NMR spectroscopy, elemental analysis, and differential scanning calorimetry. Insights into their sensitivities towards impact, friction, and electrostatics were gained by submitting the materials to standard tests. The structures of 2,4‐diamino‐1,3,5‐triazine‐6‐one nitrate, 2,4‐diamino‐1,3,5‐triazine‐6‐one sulfate, 2,4‐diamino‐1,3,5‐triazine‐6‐one perchlorate, 2,4‐diamino‐1,3,5‐triazine‐6‐one 5‐nitrotetrazolate were determined by single‐crystal X‐ray diffraction; their densities are 1.691, 1.776, 1.854, and 1.636 g cm?3, respectively. Most of the salts decompose at temperatures over 180 °C; in particular, the salts 2,4‐diamino‐1,3,5‐triazine‐6‐one nitrate and 2,4‐diamino‐1,3,5‐triazine‐6‐one perchlorate, which decompose at 303.3 and 336.4 °C, respectively, are fairly stable. Furthermore, most of the salts exhibit excellent impact sensitivities (>40 J), friction sensitivities (>360 N), and are insensitive to electrostatics. The measured densities of these energetic salts range from 1.64 to 2.01 g cm?3. The detonation pressure values calculated for these salts range from 14.6 to 29.2 GPa, and the detonation velocities range from 6536 to 8275 m s?1; these values make the salts potential candidates for thermally stable and insensitive energetic materials.  相似文献   
992.
An unexpected and previously unknown resorcinarene mono‐crown with a fused benzofuran moiety in its macrocyclic core was obtained as a byproduct from a bridging reaction of tetramethoxy resorcinarene with tetraethylene glycol ditosylate. The formation of the fused benzofuran moiety in the resorcinarene macrocycle resulted in a unique rigid and puckered boat conformation, as shown by XRD studies in the solid state. Modification of the macrocycle was also observed to affect the photophysical properties in solution by enhancing the fluorescence brightness compared with a conventional resorcinarene macrocycle. The fluorescent properties enabled unique detection of structural features, that is, the rigid boat conformation with the conjugated benzofuran system and the more flexible crown bridge part, in solution.  相似文献   
993.
Calcium pyrophosphate hydrate (CPP, Ca2P2O7·nH2O) and calcium orthophosphate compounds (including apatite, octacalcium phosphate etc.) are among the most prevalent pathological calcifications in joints. Even though only two dihydrated forms of CPP (CPPD) have been detected in vivo (monoclinic and triclinic CPPD), investigations of other hydrated forms such as tetrahydrated or amorphous CPP are relevant to a further understanding of the physicochemistry of those phases of biological interest. The synthesis of single crystals of calcium pyrophosphate monohydrate (CPPM; Ca2P2O7·H2O) by diffusion in silica gel at ambient temperature and the structural analysis of this phase are reported in this paper. Complementarily, data from synchrotron X‐ray diffraction on a CPPM powder sample have been fitted to the crystal parameters. Finally, the relationship between the resolved structure for the CPPM phase and the structure of the tetrahydrated calcium pyrophosphate β phase (CPPT‐β) is discussed.  相似文献   
994.
Copolymers of N‐isopropylacrylamide (NIPAM) and dopamine methacrylate can establish a reversible, self‐healing 3D network in aprotic solvents based on hydrogen bonding. The reactivity and hydrogen bonding formation of catechol groups in copolymer chains are studied by UV–vis and 1H NMR spectroscopy, while reversibility from sol to gel and inverse as well as self‐healing properties are tested rheologically. The produced reversible organogel can self‐encapsulate physically interacting or chemically bonded solutes such as drugs due to thermosensitivity of the used copolymer. This system offers dual‐targeted and controlled drug delivery and release—by slowing down release kinetics by supramolecular bonding of the drug and by reducing diffusion rates due to modulus increase.

  相似文献   

995.
High‐porosity interconnected, thermoresponsive macroporous hydrogels are prepared from oil‐in‐water high internal phase emulsions (HIPEs) stabilized by gelatin‐graft‐poly(N‐isopropylacrylamide). PolyHIPEs are obtained by gelling HIPEs utilizing the thermoresponsiveness of the copolymer components. PolyHIPEs properties can be controlled by varying the aqueous phase composition, internal phase volume ratio, and gelation temperature. PolyHIPEs respond to temperature changes experienced during cell seeding, allowing fibroblasts to spread, proliferate, and penetrate into the scaffold. Encapsulated cells survive ejection of cell‐laden hydrogels through a hypodermic needle. This system provides a new strategy for the fabrication of safe injectable biocompatible tissue engineering scaffolds.

  相似文献   

996.
Flow‐induced structure formation is investigated with in situ wide‐angle X‐ray diffraction with high acquisition rate (30 Hz) using isotactic polypropylene in a piston‐driven slit flow with high wall shear rates (up to ≈900 s−1). We focus on crystallization within the shear layers that form in the high shear rate regions near the walls. Remarkably, the kinetics of the crystallization process show no dependence on either flow rate or flow time; the crystallization progresses identically regardless. Stronger or longer flows only increase the thickness of the layers. A conceptual model is proposed to explain the phenomenon. Above a certain threshold, the number of shish‐kebabs formed affects the rheology such that further structure formation is halted. The critical amount is reached already within 0.1 s under the current flow conditions. The change in rheology is hypothesized to be a consequence of the “hairy” nature of shish. Our results have large implications for process modelling, since they suggest that for injection molding type flows, crystallization kinetics can be considered independent of deformation history.

  相似文献   

997.
Carbazole‐based liquid single‐crystal elastomers (LSCEs) are valuable fluorescent flexible materials to perform optical mechanotransduction under ambient conditions. Indeed, the covalent incorporation of carbazole derivatives into nematic LSCEs allows to tune their luminescence on demand under mechanical control in a quick and reversible fashion. Specifically, the fluorescence intensity for these materials can be switched back and forth in less than a second. Moreover, such a process can be performed several times without detecting any sign of fatigue in the system. In addition, these materials show excellent resistance to aging; 2 years after their preparation they exhibit the very same mechanofluorescent behavior as when freshly prepared. In fact, the here reported fluorescent systems are highly sensitive; the application of a force of 70 mN decreases the fluorescence in the elastomeric material by 7%. Thus, mechanical forces are attractive external stimuli to modulate the fluorescence of nematic elastomers rapidly and reversibly enabling thereby mechanotransduction.

  相似文献   

998.
High molecular weight cyclic poly(ε‐caprolactone)s (cPCLs) with variable ring size are synthesized via light‐induced ring closure of α,ω‐anthracene‐terminated PCL (An‐PCL‐An). The ring size of cPCL is tunable simply by adjusting the polymer concentration from 10 to 100 mg mL−1 in THF. The cyclo­addition via the bimolecular cyclization of An‐PC‐An is well characterized by a variety of analyses such as 1H NMR and UV–vis spectroscopies, gel‐permeation chromatography, and differential scanning calorimetry. The reversible dimerization of An induced by heating enables the cyclic PCL to have a switchable “on–off” capability. This novel light‐induced ring‐closure technique can be one of the most powerful candidates for producing various well‐defined cyclic polymers in highly concentrated polymer solution.

  相似文献   

999.
The functionalization of zinc oxide (ZnO) nanoparticles by poly(3‐hexylthiophene) (P3HT) brush is completed by the combination of a mussel inspired biomimetic anchoring group and Huisgen cyclo‐addition “click chemistry.” Herein, the direct coupling of an azide modified catechol derivative with an alkyne end‐functionalized P3HT is described. This macromolecular binding agent is used to access core@corona ZnO@P3HT with a stable and homogeneous conjugated organic corona. Preliminary photoluminescence measurement proves an efficient electron transfer from the donor P3HT to the acceptor ZnO nanoparticles upon grafting, thus demonstrating the potential of such a combination in organic electronics.

  相似文献   

1000.
Hybrid rod‐rod diblock copolymers, poly(γ‐benzyl L‐glutamate)‐poly(4‐cyano‐benzoic acid 2‐isopropyl‐5‐methyl‐cyclohexyl ester) (PBLG‐PPI), with determined chirality are facilely synthesized through sequential copolymerization of γ‐benzyl‐L‐glutamate N‐carboxyanhydride (BLG‐NCA) and phenyl isocyanide monomers bearing chiral menthyl pendants using a Ni(cod)(bpy) complex as the catalyst in one‐pot. Circular dichroism and absorption spectra reveal that each block of the block copolymers possesses a stable helical conformation with controlled helicity in solution due to the induction of chiral pendants. The two diastereomeric polymers self‐assemble into helical nanofibrils with opposite handedness due to the different chiral induction of the L‐ and D‐menthyl pendants, confirmed by transmission electron micro­scopy (TEM). Deprotection of the benzyl groups of the PBLG segment affords biocompatible amphiphilic diblock copolymers, poly(L‐glutamic acid)‐poly(4‐cyano‐benzoic acid 2‐isopropyl‐5‐methyl‐cyclohexyl ester) (PLGA‐PPI), that can self‐assemble into well‐defined micelles by cosolvent induced aggregation. Very interestingly, a chiral rhodamine chromophores RhB(D) can be selectively encapsulated into the chiral polymeric micelles, which is efficiently internalized into living cells when directly monitored with a confocal microscope. This contribution will be useful for developing novel rod‐rod biocompatible hybrid block copolymers with a controlled helicity, and may also provide unique chiral materials for potential bio‐medical applications.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号