首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   635篇
  免费   22篇
  国内免费   2篇
化学   572篇
晶体学   7篇
力学   1篇
数学   16篇
物理学   63篇
  2021年   5篇
  2020年   8篇
  2019年   7篇
  2017年   4篇
  2016年   10篇
  2015年   11篇
  2014年   15篇
  2013年   25篇
  2012年   29篇
  2011年   35篇
  2010年   17篇
  2009年   18篇
  2008年   44篇
  2007年   33篇
  2006年   38篇
  2005年   34篇
  2004年   36篇
  2003年   26篇
  2002年   33篇
  2001年   19篇
  2000年   19篇
  1999年   12篇
  1998年   6篇
  1997年   4篇
  1996年   9篇
  1995年   8篇
  1994年   9篇
  1993年   10篇
  1992年   6篇
  1991年   4篇
  1990年   6篇
  1989年   3篇
  1988年   6篇
  1987年   4篇
  1986年   5篇
  1985年   10篇
  1984年   9篇
  1983年   7篇
  1982年   15篇
  1981年   11篇
  1980年   3篇
  1979年   8篇
  1978年   3篇
  1977年   3篇
  1976年   6篇
  1975年   6篇
  1974年   6篇
  1973年   3篇
  1972年   2篇
  1963年   2篇
排序方式: 共有659条查询结果,搜索用时 515 毫秒
31.
We propose a binary fluorimetric method for DNA and RNA analysis by the combined use of two probes rationally designed to work cooperatively. One probe is an oligonucleotide (ODN) conjugate bearing a β‐cyclodextrin (β‐CyD). The other probe is a small reporter ligand, which comprises linked molecules of a nucleobase‐specific heterocycle and an environment‐sensitive fluorophore. The heterocycle of the reporter ligand recognizes a single nucleobase displayed in a gap on the target labeled with the conjugate and, at the same time, the fluorophore moiety forms a luminous inclusion complex with nearby β‐CyD. Three reporter ligands, MNDS (naphthyridine–dansyl linked ligand), MNDB (naphthyridine–DBD), and DPDB (pyridine–DBD), were used for DNA and RNA probing with 3′‐end or 5′‐end modified β‐CyD – ODN conjugates. For the DNA target, the β‐CyD tethered to the 3′‐end of the ODN facing into the gap interacted with the fluorophore sticking out into the major groove of the gap site ( MNDS and DPDB ). Meanwhile the β‐CyD on the 5′‐end of the ODN interacted with the fluorophore in the minor groove ( MNDB and DPDB ). The results obtained by this study could be a guideline for the design of binary DNA/RNA probe systems based on controlling the proximity of functional molecules.  相似文献   
32.
We present herein the synthesis and properties of the largest hitherto unknown graphyne fragment, namely trigonally expanded tetrakis(dehydrobenzo[12]annulene)s (tetrakis‐DBAs). Intramolecular three‐fold alkyne metathesis reactions of hexakis(arylethynyl)DBAs 9 a and 9 b using Fürstner’s Mo catalyst furnished tetrakis‐DBAs 8 a and 8 b substituted with tert‐butyl or branched alkyl ester groups in moderate and fair yields, respectively, demonstrating that the metathesis reaction of this protocol is a powerful tool for the construction of graphyne fragment backbones. For comparison, hexakis(arylethynyl)DBAs 9 c – g have also been prepared. The one‐photon absorption spectrum of tetrakis‐DBA 8 a bearing tert‐butyl groups revealed a remarkable bathochromic shift of the absorption cut‐off (λcutoff) compared with those of previously reported graphyne fragments due to extended π‐conjugation. Moreover, in the two‐photon absorption spectrum, 8 a showed a large cross‐section for a pure hydrocarbon because of the planar para‐phenylene‐ethynylene conjugation pathways. Hexakis(arylethynyl)‐DBAs 9 c – e and 9 g and tetrakis‐DBA 8 b bearing electron‐withdrawing groups aggregated in chloroform solutions. Comparison between the free energies of 9 e and 8 b bearing the same substituents revealed the more favorable association of the latter due to stronger π–π interactions between the extended π‐cores. Polarized optical microscopy observations, DSC, and XRD measurements showed that 8 b and 9 e with branched alkyl ester groups displayed columnar rectangular mesophases. By the time‐resolved microwave conductivity method, the columnar rectangular phase of 8 b was shown to exhibit a moderate charge‐carrier mobility of 0.12 cm2 V?1 s?1. These results indicate that large graphyne fragments can serve as good organic semiconductors.  相似文献   
33.
Radical reactions of a C3-vinylated chlorophyll derivative, methyl pyropheophorbide-a, which were induced by thiols and the conventional initiator azobisisobutyronitrile (AIBN) were examined in vitro for the first time. Thiyl radicals attacked regioselectively at the sole C3-vinyl group, and the anti-Markovnikov sulfanyl adducts were obtained as major products. The other peripheral substituents, as well as the chlorin macrocycle, remained intact. The AIBN-induced radical reaction competed with co-oxidation that afforded the C3-formyl chlorin. This method can open new routes to derivatization of vinyl chlorins.  相似文献   
34.
This work reports a new imidazolium and l-alanine derived copolymer-grafted silica stationary phase for ready separation of complex isomers using high-performance liquid chromatography (HPLC). For this purpose, 1-allyl-3-octadecylimidazolium bromide ([AyImC18]Br) and N-acryloyl-l-alanine sodium salt ([AAL]Na) ionic liquids (IL) monomers were synthesized. Subsequently, the bromide counteranion was exchanged with the 2-(acrylamido)propanoate organic counteranion by reacting the [AyImC18]Br with excess [AAL]Na in water. The obtained IL cation–anion monomer pair was then copolymerized on mercaptopropyl-modified silica (Sil-MPS) via a surface-initiated radical chain-transfer reaction. The selective retention behaviors of polycyclic aromatic hydrocarbons (PAHs), including some positional isomers, steroids, and nucleobases were investigated using the newly obtained Sil-poly(ImC18-AAL), and octadecyl silylated silica (ODS) was used as the reference column. Interesting results were obtained for the separation of PAHs, steroids, and nucleobases with the new organic phase. The results showed that the Sil-poly(ImC18-AAL) presented multiple noncovalent interactions, including hydrophobic, π–π, carbonyl–π, and ion–dipole interactions for the separation of PAHs and dipolar compounds. Only pure water was sufficient as the mobile phase for the separation of the nucleobases. Ten nucleosides and bases were separated, using only water as the mobile phase, within a very short time using the Sil-poly(ImC18-AAL), which is otherwise difficult to achieve using conventional hydrophobic columns such as ODS. The combination of electrostatic and hydrophobic interactions are important for the effective separation of such basic compounds without the use of any organic additive as the eluent on the Sil-poly(ImC18-AAL) column.
Figure
Separation of pyrimidines including (5) 5-fluorouracil, (6) uracil, (7) 5-bromouracil, (8) thymine, (9) cytosine, and (10) 4,6-diaminopyrimidine on Sil-poly(ImC18-AAL). Mobile phase, pure water; column temperature, 40 °C; flow rate, 1.00 ml min–1  相似文献   
35.
36.
The aim of this study is to clarify the effect of doped metal type on CO2 reduction characteristics of TiO2 with NH3 and H2O. Cu and Pd have been selected as dopants for TiO2. In addition, the impact of molar ratio of CO2 to reductants NH3 and H2O has been investigated. A TiO2 photocatalyst was prepared by a sol-gel and dip-coating process, and then doped with Cu or Pd fine particles by using the pulse arc plasma gun method. The prepared Cu/TiO2 film and Pd/TiO2 film were characterized by SEM, EPMA, TEM, STEM, EDX, EDS and EELS. This study also has investigated the performance of CO2 reduction under the illumination condition of Xe lamp with or without ultraviolet (UV) light. As a result, it is revealed that the CO2 reduction performance with Cu/TiO2 under the illumination condition of Xe lamp with UV light is the highest when the molar ratio of CO2/NH3/H2O = 1:1:1 while that without UV light is the highest when the molar ratio of CO2/NH3/H2O = 1:0.5:0.5. It is revealed that the CO2 reduction performance of Pd/TiO2 is the highest for the molar ratio of CO2/NH3/H2O = 1:1:1 no matter the used Xe lamp was with or without UV light. The molar quantity of CO per unit weight of photocatalyst for Cu/TiO2 produced under the illumination condition of Xe lamp with UV light was 10.2 μmol/g, while that for Pd/TiO2 was 5.5 μmol/g. Meanwhile, the molar quantity of CO per unit weight of photocatalyst for Cu/TiO2 produced under the illumination condition of Xe lamp without UV light was 2.5 μmol/g, while that for Pd/TiO2 was 3.5 μmol/g. This study has concluded that Cu/TiO2 is superior to Pd/TiO2 from the viewpoint of the molar quantity of CO per unit weight of photocatalyst as well as the quantum efficiency.  相似文献   
37.
We report an experimental demonstration of the induction synchrotron, the concept of which has been proposed as a future accelerator for the second generation of neutrino factory or hadron collider. The induction synchrotron supports a superbunch and a superbunch permits more charge to be accelerated while observing the constraints of the transverse space-charge limit. By using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV booster ring and captured by the barrier bucket created by the induction step voltages was accelerated to 6 GeV in the KEK proton synchrotron.  相似文献   
38.
The intramoleculae Diels-Alder reaction of cyclohexenone having an unsaturated ester side chain afforded tricyclo[4.3.1.0(3,7)]decanone in both a regio- and stereoselective manner under TMSCl-NEt(3)-ZnBr(2) conditions. Unexpectedly, the regiochemical control was against the conventional orbital requirement.  相似文献   
39.
[reaction: see text] Via an X-ray analysis, the sulfonamide bearing R(1) = i-Pr, R(2) = Me, and R(3) = Me is shown to be a tridentate ligand to a Cr(III) salt. This class of ligands, represented by R(1) = t-Bu, R(2) = 2-naphthyl, and R(3) = Me, is effective to achieve an asymmetric Ni/Cr-mediated coupling reaction and, with the C14-C38 segment of halichondrins, its synthetic potential has been demonstrated. A possible mechanism is suggested for the process.  相似文献   
40.
[structure: see text] The first total synthesis of the mycolactones is reported. This work unambiguously confirms our earlier relative and absolute stereochemical assignment of the mycolactones.  相似文献   
[首页] « 上一页 [1] [2] [3] 4 [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号