首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1302篇
  免费   53篇
  国内免费   2篇
化学   983篇
晶体学   18篇
力学   7篇
数学   30篇
物理学   319篇
  2021年   9篇
  2020年   10篇
  2019年   12篇
  2018年   8篇
  2016年   24篇
  2015年   27篇
  2014年   32篇
  2013年   50篇
  2012年   41篇
  2011年   85篇
  2010年   38篇
  2009年   41篇
  2008年   60篇
  2007年   76篇
  2006年   62篇
  2005年   59篇
  2004年   63篇
  2003年   47篇
  2002年   54篇
  2001年   42篇
  2000年   35篇
  1999年   22篇
  1998年   6篇
  1997年   10篇
  1996年   23篇
  1995年   12篇
  1994年   19篇
  1993年   12篇
  1992年   16篇
  1991年   16篇
  1990年   19篇
  1989年   15篇
  1988年   20篇
  1987年   16篇
  1986年   8篇
  1985年   14篇
  1984年   23篇
  1983年   13篇
  1982年   17篇
  1981年   12篇
  1980年   21篇
  1979年   21篇
  1978年   25篇
  1977年   11篇
  1976年   18篇
  1975年   10篇
  1974年   17篇
  1973年   9篇
  1969年   8篇
  1968年   8篇
排序方式: 共有1357条查询结果,搜索用时 62 毫秒
251.
A molecular beam of multilayer metal-benzene organometallic clusters Mn(C6H6)m (M = Al, Sc, Ti, and V) was produced by a laser vaporization synthesis method, and their magnetic deflections were measured. Multidecker sandwich clusters of transition-metal atoms and benzene Scn(C6H6)n+1 (n = 1, 2) and Vn(C6H6)n+1 (n = 1-4) possess magnetic moments that increase monotonously with n. The magnetic moments of Al(C6H6), Scn(C6H6)n+1, and Vn(C6H6)n+1 are smaller than that of their spin-only values as a result of intracluster spin relaxation, an effect that depends on the orbital angular momenta and bonding characters of the orbitals containing electron spin. While Ti(C6H6)2 was found to be nonmagnetic, Tin(C6H6)n+1 (n = 2, 3) possess nonzero magnetic moments. The mechanism of ferromagnetic spin ordering in M2(C6H6)3 (M = Sc, Ti, V) is discussed qualitatively in terms of molecular orbital analysis. These sandwich species represent a new class of one-dimensional molecular magnets in which the transition-metal atoms are formally zerovalent.  相似文献   
252.
A fluorescent photochromic compound, composed of diarylethene, fluorescein and succinimidyl ester units, was developed for the controllable fluorescent labeling of biomolecules based on a small molecule.  相似文献   
253.
We developed a capillary electrophoresis with chemiluminescence detection system using 2-methyl-6-p-methoxyphenylethynylimidazopyrazinone as a chemiluminescence reagent for determination of antioxidants of superoxide anions. 2-Methyl-6-p-methoxyphenylethynylimidazopyrazinone reacted with superoxide anions generated through the reaction of hypoxanthine and xanthine oxidase, and then emitted chemiluminescence. Suppression of the chemiluminescence in the presence of antioxidants for superoxide anions was introduced as a detection principle for antioxidants into the capillary electrophoresis with chemiluminescence detection system. After optimizing the analytical conditions, various antioxidants, such as superoxide dismutase, nitroblue tetrazolium, ascorbic acid, and catechin, were subjected to the present system. They gave negative peaks due to the quenching effect; the detection limits of superoxide dismutase, nitroblue tetrazolium, ascorbic acid, and catechin were 1, 100, 100, and 10 μM, respectively (S/N = 2). A model sample consisting of superoxide dismutase and nitroblue tetrazolium was satisfactorily separated and detected within ca. 10 min. We also applied the present system to analysis of catechin in green tea as a real sample.  相似文献   
254.
A rapid and sensitive immunoassay based on a sequential injection analysis (SIA) using magnetic microbeads for the determination of alkylphenol polyethoxylates (APnEOs) is described. An SIA system was constructed from a syringe pump, a switching valve, a flow-through type immunoreaction cell equipped with a photon counting unit and a neodymium magnet. Magnetic beads, to which an anti-APnEOs monoclonal antibody was immobilized, were used as a solid support in an immunoassay. The introduction, trapping and release of the magnetic beads in and from the immunoreaction cell were controlled by means of a neodymium magnet and adjusting the flow of a carrier solution. The immunoassay was based on an indirect competitive immunoreaction of an anti-APnEOs monoclonal antibody immobilized on the magnetic beads with a sample APnEOs and a horseradish peroxidase (HRP)-labeled APnEOs in the same sample solution, and was based on the subsequent chemiluminscence reaction of HRP on the magnetic microbeads with a luminol solution containing hydrogen peroxide and p-iodophenol. The anti-APnEOs antibody was immobilized on the magnetic microbeads by coupling the antibody with the magnetic beads after activation of a carboxylate moiety on the surface of the magnetic beads that had been coated with a polylactic acid film. The antibody immobilized magnetic beads were introduced in the immunoreaction cell and trapped in it by the neodymium magnet, which was equipped beneath the immunoreaction cell. An APnEOs sample solution containing the HRP-labeled APnEOs at a constant concentration, and a luminol solution containing hydrogen peroxide and p-iodophenol were sequentially introduced into the immunoreaction cell, according to an SIA programmed sequence. Chemiluminescence emission was monitored by means of a photon counting unit located at the upper side of the immunoreaction cell by collecting the emitted light with a lens. A typical sigmoidal calibration curve was obtained, when the logarithm of the concentration of APnEOs was plotted against the chemiluminescence intensity as the number of photons in 100 ms using standard APnEOs sample solutions at various concentrations (0–1000 ppb) under optimum conditions. The lower detection limit defined as IC80 is ca 10 ppb. The time required for analysis is less than 15 min per a sample. The present method was successfully applied to the determination of APnEOs in river water.  相似文献   
255.
That boronic acid is a reactive species toward a diol moiety even in an alkaline solution and that the boronate ion is not very reactive were demonstrated by the estimated upper limit of the rate constants for the reactions of some boronic acids with 2,2'-biphenol and 2,3-dihydroxynaphthalene in a neutral-alkaline solution, which will correct a common misunderstanding in boron chemistry and would renew the idea of effective boronic acid sensor design for carbohydrates.  相似文献   
256.
A new, practical implementation of double‐group symmetry to relativistic Gaussian spinors is presented for four‐component relativistic molecular calculations. We show that the systematic adaptability to irreducible representations under arbitrary point‐group symmetry, as well as Kramers (time‐reversal) symmetry, is inherent in the present basis spinors, which possess the analytic structure of Dirac atomic spinors. The implementation of double‐group symmetry entails significant computational efficiencies in the relativistic second‐order Møller–Plesset perturbation calculation on Au2 and the density functional theory (DFT) calculation with the B3LYP functional on octahedral UF6, in which the highest symmetries used are, respectively, C and D. The four‐component B3LYP equilibrium geometry of UF6 is reported. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
257.
258.
259.
1-(2-Pyridylamino and 2-pyrimidinylamino)naphthalene (abbreviated as Hpyn and Hpmn, respectively) and 2-(p-toluidino)quinoline (Htlq) were directly cycloaurated with Na[AuCl4] to give [AuCl2L] (L = pyn, pmn, or tlq). These complexes were characterized spectroscopically and the square planar structure of [AuCl2(pmn)] was determined by X-ray analysis. The naphthalene ring was aurated at position 2, forming a six-membered auraheterocycle with concomitant coordination of the pyrimidine-N atom. The trans influence of the carbon donor was clearly reflected in the Au–Cl bond lengths; 2.372(2) trans to C and 2.275Å trans to N. Similar square planar structures were suggested for the other two complexes.  相似文献   
260.
Using a semi-empirical molecular orbital method, PM3, and 2-propanol as an example, the dehydration and the dehydrogenation processes of alcohol on oxide catalysts were studied. The catalysts addressed here were four kinds of oxides (Al2O3, SiO2, ZnO, CdO) whose reaction selectivities had been experimentally determined. The usual models consisting of a surface metal ion, several oxide ions and an isopropoxy group were used in calculations. For the dehydration, heats of formation of the models were calculated at each point of the process where the distance between a β-hydrogen of the group and a basic site (i.e. oxygen of the group or a surface oxide ion) or a metal ion was gradually shortened, or where the length of the C–O bond of the group was gradually increased. A reasonable dehydration mechanism was estimated by comparing activation energies calculated from the transitions of the heats of formation. The most probable dehydrogenation mechanism was also estimated in a similar way by gradually making an -hydrogen close to a surface oxide ion, the metal ion or a surface proton. It was concluded that the dehydration proceeds by scission of the C–O bond of the group after its oxygen was attacked by some electrophile on the surface and that the dehydrogenation proceeds by a mechanism in which an -hydrogen of the group was extracted by the metal ion.

Based on the dehydration mechanism thus deduced, alkoxy groups generated by adsorption of the primary, secondary and tertiary alcohols on SiO2 were calculated in order to estimate the activation energies of their decompositions. In result, the order of the energies was found to be in good agreement with that of the decomposition rates experimentally determined by Kitahara. This agreement gives support to the validity of the mechanism deduced for the dehydration of alcohol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号