首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3132篇
  免费   154篇
  国内免费   12篇
化学   2390篇
晶体学   22篇
力学   93篇
数学   196篇
物理学   597篇
  2024年   2篇
  2023年   11篇
  2022年   42篇
  2021年   82篇
  2020年   61篇
  2019年   67篇
  2018年   48篇
  2017年   49篇
  2016年   121篇
  2015年   101篇
  2014年   148篇
  2013年   271篇
  2012年   258篇
  2011年   262篇
  2010年   178篇
  2009年   144篇
  2008年   189篇
  2007年   179篇
  2006年   187篇
  2005年   159篇
  2004年   134篇
  2003年   115篇
  2002年   140篇
  2001年   65篇
  2000年   52篇
  1999年   36篇
  1998年   21篇
  1997年   19篇
  1996年   24篇
  1995年   20篇
  1994年   17篇
  1993年   11篇
  1992年   10篇
  1991年   9篇
  1990年   6篇
  1989年   12篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   12篇
  1984年   6篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有3298条查询结果,搜索用时 31 毫秒
81.
Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8+ T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8+ T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as TH2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8+ T and CD4+ TH1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment.Subject terms: Cancer immunotherapy, Cancer microenvironment, Tumour angiogenesis, Tumour immunology, Targeted therapies  相似文献   
82.
A series of stable complexes, (PMe(3))(3)Ru(SiR(3))(2)(H)(2) ((SiR(3))(2) = (SiH(2)Ph)(2), 3a; (SiHPh(2))(2), 3b; (SiMe(2)CH(2)CH(2)SiMe(2)), 3c), has been synthesized by the reaction of hydridosilanes with (PMe(3))(3)Ru(SiMe(3))H(3) or (PMe(3))(4)Ru(SiMe(3))H. Compounds 3a and 3c adopt overall pentagonal bipyramidal geometries in solution and the solid state, with phosphine and silyl ligands defining trigonal bipyramids and ruthenium hydrides arranged in the equatorial plane. Compound 3a exhibits meridional phosphines, with both silyl ligands equatorial, whereas the constraints of the chelate in 3c result in both axial and equatorial silyl environments and facial phosphines. Although there is no evidence for agostic Si-H interactions in 3a and 3b, the equatorial silyl group in 3c is in close contact with one hydride (1.81(4) A) and is moderately close to the other hydride (2.15(3) A) in the solid state and solution (nu(Ru.H.Si) = 1740 cm(-)(1) and nu(RuH) = 1940 cm(-)(1)). The analogous bis(silyl) dihydride, (PMe(3))(3)Ru(SiMe(3))(2)(H)(2) (3d), is not stable at room temperature, but can be generated in situ at low temperature from the 16e(-) complex (PMe(3))(3)Ru(SiMe(3))H (1) and HSiMe(3). Complexes 3b and 3d have been characterized by multinuclear, variable temperature NMR and appear to be isostructural with 3a. All four complexes exhibit dynamic NMR spectra, but the slow exchange limit could not be observed for 3c. Treatment of 1 with HSiMe(3) at room temperature leads to formation of (PMe(3))(3)Ru(SiMe(2)CH(2)SiMe(3))H(3) (4b) via a CH functionalization process critical to catalytic dehydrocoupling of HSiMe(3) at higher temperatures. Closer inspection of this reaction between -110 and -10 degrees C by NMR reveals a plethora of silyl hydride phosphine complexes formed by ligand redistribution prior to CH activation. Above ca. 0 degrees C this mixture converts cleanly via silane dehydrogenation to the very stable tris(phosphine) trihydride carbosilyl complex 4b. The structure of 4b was determined crystallographically and exhibits a tetrahedral P(3)Si environment around the metal with the three hydrides adjacent to silicon and capping the P(2)Si faces. Although strong Si.HRu interactions are not indicated in the structure or by IR, the HSi distances (2.00(4) - 2.09(4) A) and average coupling constant (J(SiH) = 25 Hz) suggest some degree of nonclassical SiH bonding in the RuH(3)Si moiety. The least hindered complex, 3a, reacts with carbon monoxide principally via an H(2) elimination pathway to yield mer-(PMe(3))(3)(CO)Ru(SiH(2)Ph)(2), with SiH elimination as a minor process. However, only SiH elimination and formation of (PMe(3))(3)(CO)Ru(SiR(3))H is observed for 3b-d. The most hindered bis(silyl) complex, 3d, is extremely labile and even in the absence of CO undergoes SiH reductive elimination to generate the 16e(-) species 1 (DeltaH(SiH)(-)(elim) = 11.0 +/- 0.6 kcal x mol(-)(1) and DeltaS(SiH)(-)(elim) = 40 +/- 2 cal x mol(-)(1) x K(-)(1); Delta = 9.2 +/- 0.8 kcal x mol(-)(1) and Delta = 9 +/- 3 cal x mol(-)(1).K(-)(1)). The minimum barrier for the H(2) reductive elimination can be estimated, and is higher than that for silane elimination at temperatures above ca. -50 degrees C. The thermodynamic preferences for oxidative additions to 1 are dominated by entropy contributions and steric effects. Addition of H(2) is by far most favorable, whereas the relative aptitudes for intramolecular silyl CH activation and intermolecular SiH addition are strongly dependent on temperature (DeltaH(SiH)(-)(add) = -11.0 +/- 0.6 kcal x mol(-)(1) and DeltaS(SiH)(-)(add) = -40 +/- 2 cal.mol(-)(1) x K(-)(1); DeltaH(beta)(-CH)(-)(add) = -2.7 +/- 0.3 kcal x mol(-)(1) and DeltaS(beta)(-CH)(-)(add) = -6 +/- 1 cal x mol(-)(1) x K(-)(1)). Kinetic preferences for oxidative additions to 1 - intermolecular SiH and intramolecular CH - have been also quantified: Delta = -1.8 +/- 0.8 kcal x mol(-)(1) and Delta = -31 +/- 3 cal x mol(-)(1).K(-)(1); Delta = 16.4 +/- 0.6 kcal x mol(-)(1) and Delta = -13 +/- 6 cal x mol(-)(1).K(-)(1). The relative enthalpies of activation (-)(1) x K(-)(1)). Kinetic preferences for oxidative additions to 1 - intermolecular SiH and intramolecular CH - have been also quantified: Delta (H)SiH(add) = 1.8 +/- 0.8 kcal x mol(-)(1) and Delta S((SiH-add) =31+/- 3 cal x mol(-)(1) x K(-)(1); Delta S (SiH -add) = 16.4 +/- 0.6 kcal x mol(-)(1) and =Delta S (SiH -CH -add) =13+/- 6 cal x mol(-)(1) x K(-)(1). The relative enthalpies of activation are interpreted in terms of strong SiH sigma-complex formation - and much weaker CH coordination - in the transition state for oxidative addition.  相似文献   
83.
On-demand electrospray ionization from different liquid channels in the same emitter was realized using filamented capillary and gas phase charge supply. The solution sub-channel was formed when back-filling solution to the emitter tip by capillary action along the filament. Gas phase charge carriers were used to trigger electrospray ionization from the solution meniscus at the tip. The meniscus at the tip opening may be fully filled or partially empty to generate electrospray ionization in main-channel regime and sub-channel regime, respectively. For emitters with 4 μm tip opening, the two nested electrospray (nested-ESI) channels accommodated ESI flow rates ranging from 50 pL min−1 to 150 nL min−1. The platform enabled on-demand regime alternations within one sample run, in which the sub-channel regime generated smaller charged droplets. Ionization efficiencies for saccharides, glycopeptide, and proteins were enhanced in the sub-channel regime. Non-specific salt adducts were reduced and identified by regime alternation. Surprisingly, the sub-channel regime produced more uniform responses for a peptide mixture whose relative ionization efficiencies were insensitive to ESI conditions in previous picoelectrospray study. The nested channels also allowed effective washing of emitter tip for multiple sampling and analysis operations.

Nested electrospray ionization alternates on-demand between microscale main-channel and nanscale sub-channels.  相似文献   
84.
Systematic investigations to develop an efficient enantioselective synthetic method for alpha-alkyl-alanine by catalytic phase-transfer alkylation were performed. The alkylation of 2-naphthyl aldimine tert-butyl ester, 1E, with RbOH and O(9)-allyl-N-2',3',4'-trifluorobenzylhydrocinchonidinium bromide, 6, at -35 degrees C showed the highest enantioselectivities, up to 96% ee.  相似文献   
85.
86.
Extracellular signal-regulated kinase (ERK) is a key regulatory enzyme mediating cell responses to mitogenic stimulation and is one of the key components in linking growth factor receptor activation to serine/threonine protein phosphorylation processes. Phosphorylation reaction by ERK plays an important role in many signal transduction pathways. ERK phosphorylates numerous substrates such as MBP, microtubule-associated protein 2 (MAP2) and nuclear protein. In particular, MBP is a substrate commonly employed for the detection of ERK activity and contains the consensus primary sequence PRT97P. In this paper, we compared the degree of the phosphorylation reaction of MBP substrate peptides by ERK with the three different MBP substrate peptides, MBP1(KNIVTPRTPPPSQGK), MBP2(VPRTPGGRR) and MBP3(APRTPGGRR) in order to select an efficient substrate peptide for phosphorylation reaction by ERK. The results showed that the MBP3 peptide is the most efficient substrate for phosphorylation reaction by ERK. Using MBP3 peptide, the phosphorylation reaction of MBP by ERK was monitored with both matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and capillary electrophoresis (CE). Our results demonstrate the feasibility of the CE method, the method being a simple and reliable technique in determining and characterizing various kinds of enzyme reaction especially including kinase enzymes.  相似文献   
87.
88.
A unique chain-rupturing transformation that converts an ether functionality into two hydrocarbyl units and carbon monoxide is reported, mediated by iridium(i) complexes supported by aminophenylphosphinite (NCOP) pincer ligands. The decarbonylation, which involves the cleavage of one C–C bond, one C–O bond, and two C–H bonds, along with formation of two new C–H bonds, was serendipitously discovered upon dehydrochlorination of an iridium(iii) complex containing an aza-18-crown-6 ether macrocycle. Intramolecular cleavage of macrocyclic and acyclic ethers was also found in analogous complexes featuring aza-15-crown-5 ether or bis(2-methoxyethyl)amino groups. Intermolecular decarbonylation of cyclic and linear ethers was observed when diethylaminophenylphosphinite iridium(i) dinitrogen or norbornene complexes were employed. Mechanistic studies reveal the nature of key intermediates along a pathway involving initial iridium(i)-mediated double C–H bond activation.

A unique chain-rupturing transformation that converts an ether functionality into two hydrocarbyl units and carbon monoxide is reported.  相似文献   
89.
A modified electrode is fabricated by embedding gold nanoparticles into a layer of electroactive polymer, poly(4-aminothiophenol) (PAT) on the surface of glassy carbon (GC) electrode. Cyclic voltammetry (CV) is performed to deposit PAT and concomitantly deposit Au nanoparticles. Field emission transmission electron microscopic image of the modified electrode, PAT-Aunano-ME, indicates the presence of uniformly distributed Au nanoparticles having the sizes of 8-10 nm. Electrochemical behavior of the PAT-Aunano-ME towards detection of ascorbic acid (AA) and dopamine (DA) is studied using CV. Electrocatalytic determination of DA in the presence of fixed concentration of AA and vice versa, are studied using differential pulse voltammetry (DPV). PAT-Aunano-ME exhibits two well defined anodic peaks at the potential of 75 and 400 mV for the oxidation of AA and DA, respectively with a potential difference of 325 mV. Further, the simultaneous determination of AA and DA is studied by varying the concentration of AA and DA. PAT-Aunano-ME exhibits selectivity and sensitivity for the simultaneous determination of AA and DA without fouling by the oxidation products of AA or DA. PAT and Au nanoparticles provide synergic influence on the accurate electrochemical determination of AA or DA from a mixture having any one of the component (AA or DA) in excess. The practical analytical utilities of the PAT-Aunano-ME are demonstrated by the determination of DA and AA in dopamine hydrochloride injection and human blood serum samples.  相似文献   
90.
Various carboxylic esters or amides were prepared in good to excellent yield between carboxylic acids and equimolar amounts of alcohols or amines under very mild conditions (0-45°C; within 3 h) using dimethylsulfamoyl chloride (Me2NSO2Cl; 1) combined with N,N-dimethylamines (Me2NR: 2a; R=Me, 2b; R=Bu). The choice of the sulfamoyl chloride and the amine is crucial for the reaction; that is, sterically uncrowded amines accelerated the present esterification and amidation. This agent had some advantages over methanesulfonyl chloride (3)/amines as for the atom-economy, avoidance of side reactions, and had very high chemoselectivity toward the carboxyl group vs the hydroxyl group; the experiment was performed by the addition of 1 to the mixture of carboxylic acids and alcohols. Application of this method to the synthesis of coumaperine, a chemopreventive natural product, was performed using the present amidation as a key step.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号