首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28680篇
  免费   3570篇
  国内免费   3238篇
化学   19883篇
晶体学   346篇
力学   1519篇
综合类   313篇
数学   3609篇
物理学   9818篇
  2024年   55篇
  2023年   368篇
  2022年   712篇
  2021年   758篇
  2020年   812篇
  2019年   892篇
  2018年   749篇
  2017年   763篇
  2016年   1142篇
  2015年   1203篇
  2014年   1492篇
  2013年   1946篇
  2012年   2216篇
  2011年   2469篇
  2010年   1797篇
  2009年   1860篇
  2008年   2044篇
  2007年   1884篇
  2006年   1763篇
  2005年   1507篇
  2004年   1299篇
  2003年   1068篇
  2002年   1134篇
  2001年   846篇
  2000年   720篇
  1999年   510篇
  1998年   383篇
  1997年   300篇
  1996年   327篇
  1995年   235篇
  1994年   237篇
  1993年   204篇
  1992年   198篇
  1991年   153篇
  1990年   155篇
  1989年   136篇
  1988年   129篇
  1987年   86篇
  1986年   93篇
  1985年   121篇
  1984年   84篇
  1983年   80篇
  1982年   54篇
  1981年   50篇
  1980年   56篇
  1979年   41篇
  1978年   46篇
  1976年   40篇
  1974年   50篇
  1973年   45篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
合成和表征了一种锌(Ⅱ)配合物[Zn2(L)Cl3]2[ZnCl4]·CH3CN·CH3OH·3H2O(L=1,1,4,7,7-五(2-吡啶甲基)-二乙基三胺),并用对硝基苯磷酸酯(PNPP)作为反应底物测试了它的催化活性。研究结果表明配合物中的1个Zn(Ⅱ)形成变形的八面体构型,另1个Zn(Ⅱ)形成变形的三角双锥构型。它催化PNPP的水解符合米氏方程模型。在不同的条件下测试了几种反应动力学参数VmaxKmKcat,发现锌(Ⅱ)配合物在30 ℃和pH=8.0时有最大的催化活性。  相似文献   
962.
A novel and reliable analytical method based on a graphene adsorbent for solid-phase extraction (SPE) derivatized with N-tert-butyldimethylsilyl-N- methyltrifluoroacetamide and analyzed by gas chromatography–mass spectrometry was developed for determination of nine pharmaceuticals and personal care products (PPCPs) in wastewater samples. Different ratios of graphene/silica gel were tested, with 20 % graphene/silica gel giving the best performance as an SPE adsorbent. The mean recoveries of the target analytes obtained by 20 % graphene/silica gel SPE ranged from 58.1 to 87.6 %. The limit of quantification ranged from 30 to 259 ng/L and from 13 to 115 ng/L for the influent and effluent, respectively. By comparing the accuracy and precision of 20 % graphene/silica gel and Oasis HLB SPE cartridges, we demonstrated that the method can be satisfactorily used for the analysis of PPCPs in wastewater samples. We applied the method to wastewater samples from a sewage treatment plant near Riverside, California, to track the concentration change of PPCPs in the treatment processes.  相似文献   
963.
Fluorescence (FL) emission properties, microporous structures, energy‐minimized chain conformations, and lamellar layer structures of the silicon‐containing poly(diphenylacetylene) derivative of p‐PTMSDPA before and after desilylation were investigated. The nitrogen‐adsorption isotherms of p‐PTMSDPA film before and after desilylation were typical of type I, indicating microporous structures. The BET surface area and pore volume of the p‐PTMSDPA film were significantly reduced after the desilylation reaction, simultaneously, its FL emission intensity remarkably decreased. The theoretical calculation on both model compounds of p‐PTMSDPA and its desilylated polymer, PDPA, showed a remarkable difference in chain conformation: The side phenyl rings of p‐PTMSDPA are discontinuously arranged in a zig‐zag pattern, while the PDPA is continuously coiled in a helical manner. The lamellar layer distance (LLD) in the p‐PTMSDPA film significantly decreased after the desilylation reaction.

  相似文献   

964.
采用电化学还原法在表面改性的碳布上,通过改变催化剂沉积顺序及氢钨青铜沉积时间制备铂-氢钨青铜复合催化剂,所得电极作为质子交换膜燃料电池(PEMFC)阳极。利用X射线衍射(XRD)、热重分析(TG)、扫描电子显微镜(SEM)、循环伏安(CV)及单电池极化性能测试研究了催化剂的组成、沉积量、分散性及其对氢氧化的电催化活性。实验结果表明,氢钨青铜沉积时间及催化剂沉积顺序对电极催化性能有显著影响,当氢钨青铜沉积时间为10 min,先沉积氢钨青铜、后沉积铂所得Pt/HxWO3电极对氢氧化具有最佳的催化活性。适量的氢钨青铜才能与铂形成较好的协同催化效应。  相似文献   
965.
Synthesis and Crystal-Structure of Na2Mn3O7 Single crystals of Na2Mn3O7 have been grown hydrothermally applying high oxygen pressure (p = 2 kbar). The new compound cystallizes triclinic; space group P1 ; a = 6.636(6) Å, b = 6.854(6) Å, c = 7.548(6) Å, α = 105.76(6)°, β = 106.86(6)°, γ = 111.60(6)°; Z = 2. The crystal structure has been solved and refined to R = 7.9% and Rw = 6.2% (diffractometer data, 1044 independent reflexions). The crystal structure consists of Mn3O72? anions with manganese coordinated octahedrally by oxygen. These layered anions are hold together by Na+ ions (coordination numbers 5 and 6).  相似文献   
966.
Establishing a reliable method to predict the global mean temperature (Te) is of great importance because CO2 reduction activities require political and global cooperation and significant financial resources. The current climate models all seem to predict that the earth's temperature will continue to increase, mainly based on the assumption that CO2 emissions cannot be lowered significantly in the foreseeable future. Given the earth's multifactor climate system, attributing atmospheric CO2 as the only cause for the observed temperature anomaly is most likely an oversimplification; the presence of water (H2O) in the atmosphere should at least be considered. As such, Te is determined by atmospheric water content controlled by solar activity, along with anthropogenic CO2 activities. It is possible that the anthropogenic CO2 activities can be reduced in the future. Based on temperature measurements and thermodynamic data, a new model for predicting Te has been developed. Using this model, past, current, and future CO2 and H2O data can be analyzed and the associated Te calculated. This new, esoteric approach is more accurate than various other models, but has not been reported in the open literature. According to this model, by 2050, Te may increase to 15.5 ℃ under "business-as-usual" emissions. By applying a reasonable green technology activity scenario, Te may be reduced to approximately 14.2 ℃. To achieve CO2 reductions, the scenario described herein predicts a CO2 reduction potential of 513 gigatons in 30 years. This proposed scenario includes various CO2 reduction activities, carbon capturing technology, mineralization, and bio-char production; the most important CO2 reductions by 2050 are expected to be achieved mainly in the electricity, agriculture, and transportation sectors. Other more aggressive and plausible drawdown scenarios have been analyzed as well, yielding CO2 reduction potentials of 1051 and 1747 gigatons, respectively, in 30 years, but they may reduce global food production. It is emphasized that the causes and predictions of the global warming trend should be regarded as open scientific questions because several details concerning the physical processes associated with global warming remain uncertain. For example, the role of solar activities coupled with Milankovitch cycles are not yet fully understood. In addition, other factors, such as ocean CO2 uptake and volcanic activity, may not be negligible.  相似文献   
967.
Dark formation of hydroxyl radical upon oxidation of reduced iron minerals plays an important role in the degradation and transformation of organic and inorganic pollutants. Herein, we compared the hydroxyl radical formation from various reduced iron minerals at different redox conditions. OH production was generally observed from the oxidation of reduced iron minerals, following the order: mackinawite (FeS) > reduced nontronite (iron-bearing smectite clay) > pyrite (FeS2) > siderite (FeCO3). Structural Fe2+ and dissolved O2 play critical roles in OH production from reduced iron minerals. OH production increases with decreasing pH, and Cl? has little effect on this process. More importantly, dissolved organic matter significantly enhances OH production, especially under O2 purging, highlighting the importance of this process in ambient environments. This sunlight-independent pathway in which OH forms during oxidation of reduced iron minerals is helpful for understanding the degradation and transformation of various inorganic and organic pollutants in the redox-fluctuation environments.  相似文献   
968.
A variety of benzofuranone‐based spiroisochromenes were originally designed and synthesized to gain insight into the oxa‐6π electrocyclic reaction of cis,cis‐1,8‐dioxatetraene for the first time. The stability of the 1,8‐dioxatetraene intermediate is governed by its steric congestion and can be fine‐tuned through modification of the backbone structure, leading to the reactivity differences in the 6π electrocyclic reaction and the emergence of photochromic properties.  相似文献   
969.
Redox‐active esters (RAEs) as alkyl radical precursors have been extensively developed for C?C bond formations. However, the analogous transformations of fluoroalkyl radicals from the corresponding acid or ester precursors remain challenging because of the high oxidation potential of the fluoroalkyl carboxylate anions. The newly developed N‐hydroxybenzimidoylchloride (NHBC) ester provides a general leaving group assisted strategy to generate a portfolio of fluoroalkyl radicals, and can be successfully applied in photoinduced decarboxylative hydrofluoroalkylation and heteroarylation of unactivated olefins. In addition, DFT calculations revealed that the NHBC ester proceeds by the fluorocarbon radical pathway, whereas other well‐known RAEs proceed by the nitrogen radical pathway.  相似文献   
970.
The lithium–sulfur battery is an attractive option for next‐generation energy storage owing to its much higher theoretical energy density than state‐of‐the‐art lithium‐ion batteries. However, the massive volume changes of the sulfur cathode and the uncontrollable deposition of Li2S2/Li2S significantly deteriorate cycling life and increase voltage polarization. To address these challenges, we develop an ?‐caprolactam/acetamide based eutectic‐solvent electrolyte, which can dissolve all lithium polysulfides and lithium sulfide (Li2S8–Li2S). With this new electrolyte, high specific capacity (1360 mAh g?1) and reasonable cycling stability are achieved. Moreover, in contrast to conventional ether electrolyte with a low flash point (ca. 2 °C), such low‐cost eutectic‐solvent‐based electrolyte is difficult to ignite, and thus can dramatically enhance battery safety. This research provides a new approach to improving lithium–sulfur batteries in aspects of both safety and performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号