首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66232篇
  免费   14837篇
  国内免费   6169篇
化学   61964篇
晶体学   759篇
力学   2795篇
综合类   406篇
数学   5865篇
物理学   15449篇
  2024年   57篇
  2023年   611篇
  2022年   885篇
  2021年   1223篇
  2020年   2376篇
  2019年   3588篇
  2018年   2033篇
  2017年   1644篇
  2016年   4704篇
  2015年   4883篇
  2014年   5219篇
  2013年   6274篇
  2012年   5702篇
  2011年   5147篇
  2010年   4939篇
  2009年   4857篇
  2008年   4643篇
  2007年   3788篇
  2006年   3509篇
  2005年   3312篇
  2004年   2753篇
  2003年   2356篇
  2002年   3160篇
  2001年   2246篇
  2000年   2061篇
  1999年   1123篇
  1998年   590篇
  1997年   504篇
  1996年   513篇
  1995年   423篇
  1994年   374篇
  1993年   300篇
  1992年   283篇
  1991年   224篇
  1990年   189篇
  1989年   166篇
  1988年   154篇
  1987年   93篇
  1986年   81篇
  1985年   70篇
  1984年   38篇
  1983年   39篇
  1982年   17篇
  1981年   22篇
  1980年   17篇
  1979年   8篇
  1978年   15篇
  1977年   3篇
  1976年   4篇
  1957年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
32.
In the current work, two eco‐friendly analytical methods based on capillary electrophoresis (CE) and reversed phase liquid chromatography (RPLC) were developed for simultaneous determination of the most commonly used anticancer drugs for Hodgkin's disease: methotrexate (MTX), vinblastine, chlorambucil and dacarbazine. A background electrolyte (BGE) of 12.5 mmol/L phosphate buffer at pH 7.4 and 0.1 µmol/L 1‐butyl‐3‐methyl imidazolium bromide (BMImBr) ionic liquid (IL) was used for CE measurements at 250 nm detection wavelength, 20 kV applied voltage and 25 °C. The rinsing protocol was significantly improved to reduce the adsorption of IL on the interior surface of capillary. Moreover, RPLC method was developed on α‐1‐acid glycoprotein (AGP) column. Mobile phase was 10 mmol/L phosphate buffer at pH 6.0 (100% v/v) and flow rate at 0.1 mL/min. As AGP is a chiral column, it was successfully separated l ‐MTX from its enantiomer impurity d ‐MTX. Good linearity of quantitative analysis was achieved with coefficients of determinations (r2) >0.995. The stability of drugs measurements was investigated with adequate recoveries up to 24 h storage time under ambient temperature. The limits of detection were <50 and 90 ng/mL by CE and RPLC, respectively. The using of short‐chain IL as an additive in BGE achieved 600‐fold sensitivity enhancement compared with conventional Capillary Zone Electrophoresis (CZE). Therefore, for the first time, the proposed methods were successfully applied to determine simultaneously the analytes in human plasma and urine samples at clinically relevant concentrations with fast and simple pretreatments. Developed IL‐assisted CE and RPLC methods were also applied to measure MTX levels in patients’ samples over time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
33.
miRNA (miR)-155 is a potential biomarker for breast cancers. We aimed at developing a nanosensor for miR-155 detection by integrating hybridization chain reaction (HCR) and silver nanoclusters (AgNCs). HCR serves as an enzyme-free and isothermal amplification method, whereas AgNCs provide a built-in fluorogenic detection probe that could simplify the downstream analysis. The two components were integrated by adding a nucleation sequence of AgNCs to the hairpin of HCR. The working principle was based on the influence of microenvironment towards the hosted AgNCs, whereby unfolding of hairpin upon HCR has manipulated the distance between the hosted AgNCs and cytosine-rich toehold region of hairpin. As such, the dominant emission of AgNCs changed from red to yellow in the absence and presence of miR-155, enabling a ratiometric measurement of miR with high sensitivity. The limit of detection (LOD) of our HCR-AgNCs nanosensor is 1.13 fM in buffered solution. We have also tested the assay in diluted serum samples, with comparable LOD of 1.58 fM obtained. This shows the great promise of our HCR-AgNCs nanosensor for clinical application.  相似文献   
34.
35.
In the view of substrate availability, atomic efficiency and cost, directly using arenols as coupling partners in cross‐coupling, would be one of the most attractive goals. Up to date, many efforts have been made to activate the C—O bond of phenols with different strategies, for example, through in‐situ formed intermediates, through a catalytic reductive dearomatization‐condensation‐rearomatization sequence or catalytic deoxygenation. In this review, we summarized recent advances in cross‐couplings of arenols as the electrophiles via C—O activation.  相似文献   
36.
Three‐dimensional (3D) nanometal films serving as current collectors have attracted much interest recently owing to their promising application in high‐performance supercapacitors. In the process of the electrochemical reaction, the 3D structure can provide a short diffusion path for fast ion transport, and the highly conductive nanometal may serve as a backbone for facile electron transfer. In this work, a novel polypyrrole (PPy) shell@3D‐Ni‐core composite is developed to enhance the electrochemical performance of conventional PPy. With the introduction of a Ni metal core, the as‐prepared material exhibits a high specific capacitance (726 F g?1 at a charge/discharge rate of 1 A g?1), good rate capability (a decay of 33 % in Csp with charge/discharge rates increasing from 1 to 20 A g?1), and high cycle stability (only a small decrease of 4.2 % in Csp after 1000 cycles at a scan rate of 100 mV s?1). Furthermore, an aqueous symmetric supercapacitor device is fabricated by using the as‐prepared composite as electrodes; the device demonstrates a high energy density (≈21.2 Wh kg?1) and superior long‐term cycle ability (only 4.4 % and 18.6 % loss in Csp after 2000 and 5000 cycles, respectively).  相似文献   
37.
Lithium-sulfur batteries (LSBs) with high energy density and low cost have been recognized as one of the most promising next-generation energy storage systems. Although it has taken decades of development, the practical application of LSBs has been hindered by several inherent obstacles, particularly the severe shuttle effect and sluggish reaction kinetics in the sulfur cathode. Various strategies have been proposed to address these problems via rational design of electrode materials and configurations. Freestanding sulfur cathode could be a promising strategy to improve the sulfur mass loading at the cathode level and energy density of LSBs. This minireview will briefly summary the recent advances in freestanding cathodes for LSBs. The advantages and disadvantages of various freestanding cathodes are discussed and the prospects for the development of flexible cathodes are envisioned.  相似文献   
38.
39.
40.
Exosomes are nanovesicles secreted by most cellular types that carry important biochemical compounds throughout the body with different purposes, playing a preponderant role in cellular communication. Because of their structure, physicochemical properties and stability, recent studies are focusing in their use as nanocarriers for different therapeutic compounds for the treatment of different diseases ranging from cancer to Parkinson's disease. However, current bioseparation protocols and methodologies are selected based on the final exosome application or intended use and present both advantages and disadvantages when compared among them. In this context, this review aims to present the most important technologies available for exosome isolation while discussing their advantages and disadvantages and the possibilities of being combined with other strategies. This is critical since the development of novel exosome‐based therapeutic strategies will be constrained to the effectiveness and yield of the selected downstream purification methodologies for which a thorough understanding of the available technological resources is needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号