首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   479篇
  免费   17篇
  国内免费   2篇
化学   341篇
晶体学   4篇
力学   18篇
数学   12篇
物理学   123篇
  2024年   2篇
  2023年   4篇
  2022年   12篇
  2021年   12篇
  2020年   17篇
  2019年   20篇
  2018年   21篇
  2017年   15篇
  2016年   18篇
  2015年   17篇
  2014年   17篇
  2013年   41篇
  2012年   51篇
  2011年   54篇
  2010年   25篇
  2009年   21篇
  2008年   18篇
  2007年   18篇
  2006年   11篇
  2005年   22篇
  2004年   10篇
  2003年   2篇
  2002年   8篇
  2001年   2篇
  2000年   2篇
  1997年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   5篇
  1970年   2篇
  1967年   1篇
  1966年   1篇
  1927年   1篇
排序方式: 共有498条查询结果,搜索用时 109 毫秒
201.
More than one oligonucleotide can be synthesized at a time by linking multiple oligonucleotides end-to-end in a tandem manner on the surface of a solid-phase support. The 5'-terminal hydroxyl position of one oligonucleotide serves as the starting point for the next oligonucleotide synthesis. The two oligonucleotides are linked via a cleavable 3'-O-hydroquinone-O,O'-diacetic acid linker arm (Q-linker). The Q-linker is rapidly and efficiently coupled to the 5'-OH position of immobilized oligonucleotides using HATU, HBTU, or HCTU in the presence of 1 equiv of DMAP. This protocol avoids introduction of phosphate linkages on either the 3'- or 5'-end of oligonucleotides. A single NH(4)OH cleavage step can simultaneously release the products from the surface of the support and each other to produce free 5'- and 3'-hydroxyl termini. Selective cleavage of one oligonucleotide out of two sequences has also been accomplished via a combination of succinyl and Q-linker linker arms. Tandem synthesis of multiple oligonucleotides is useful for producing sets of primers for PCR, DNA sequencing, and other diagnostic applications as well as double-stranded oligonucleotides. Tandem synthesis of the same sequence multiple times increases the yield of material from any single synthesis column for maximum economy in large-scale synthesis. This method can also be combined with reusable solid-phase supports to further reduce the cost of oligonucleotide production.  相似文献   
202.
Reactions of biscyclopentadienyl niobium(IV) dichloride and bisindenyl niobium(IV) dichloride with sodium or potassium salts of various pseudohalides have been studied and the pseudohalide complexes so formed of the formulae (C5H5)2Nb(Ps)2 and (C2H7)2Nb(Ps)2 where Ps may be NC, NCO, NCS, or N3, have been isolated. The complexes have been characterised on the basis of physical measurements, analytical data and infrared spectral studies.  相似文献   
203.
The frequently severe effects of currently utilized platinum-based complexes have prompted researchers to develop less toxic transition metal based anticancer drugs. Transition metal complexes have recently gained considerable attention as promising anticancer agents due to their efficient drug design and fast optimisation. Some transition metal complexes displayed better anticancer activity than cis-platin. This led to the transition metal complexes for clinical application of chemotherapeutic drugs for cancer therapy. Cytotoxicity of the complexes has been evaluated on the basis of their IC50 values. In this review, we have focussed on recent findings about the anticancer mechanism of action of first row transition metal complexes during the last ten years.  相似文献   
204.
Synthesis of a new class of cofacially oriented dipyridyl(pyridinium)lthieno[2,3-b]thiophenes with or without -CO2Et and -COMe substituents at C2, and C5 positions of thieno[2,3-b]thiophene ring was readily accomplished using a double Dieckman cyclization protocol as the key step. While C2/C5 substituted dipyridylthieno[2,3-b]thiophenes exhibited syn/anti atropisomerism at least up to 70 °C with Arrhenius energy of activation (ΔG) in the range of 17-18 kcal/mol, on the other hand unsubstituted dipyridylthieno[2,3-b]thiophene and its bis-N-quaternized salt were found to show free conformational rotation with an estimated ΔG of lower than 10 kcal/mol. Conformational energy minimization using AM1 protocol revealed a slight preference for the anti over syn isomers. Compared to the unsubstituted dipyridylthieno[2,3-b]thiophenes, higher energy barriers to rotation (3.7-5.1 kcal/mol) in substituted dipyridylthieno[2,3-b]thiophenes can be attributed to steric encumbrance resulting from -CO2Et and -COMe substituents located on the non-rotating thienothiophene platform.  相似文献   
205.
An electrode's performance for catalytic CO2 conversion to fuels is a complex convolution of surface structure and transport effects. Using well‐defined mesostructured silver inverse opal (Ag‐IO) electrodes, it is demonstrated that mesostructure‐induced transport limitations alone serve to increase the turnover frequency for CO2 activation per unit area, while simultaneously improving reaction selectivity. The specific activity for catalyzed CO evolution systematically rises by three‐fold and the specific activity for catalyzed H2 evolution systematically declines by ten‐fold with increasing mesostructural roughness of Ag‐IOs. By exploiting the compounding influence of both of these effects, we demonstrate that mesostructure, rather than surface structure, can be used to tune CO evolution selectivity from less than 5 % to more than 80 %. These results establish electrode mesostructuring as a powerful complementary tool for tuning both catalyst selectivity and efficiency for CO2 conversion into fuels.  相似文献   
206.
In this study, nanocomposite poly(lactic acid) and poly(butylene adipate-co-terephthalate) (PLA/PBAT) blends were prepared through polymer blending in the presence of multi-functional epoxy as a compatibilizer that could react with epoxy group and terminated end group of two phases to increase interfacial adhesion between PLA and PBAT and improve the toughness of PLA. The effects of porous clay heterostructure from mixed CTAB:CTAC surfactant in the mole ratio of 1:2 (B1C2-PCH) were also investigated. The elongation at break of the blends reached 38%, which was eight times that of neat PLA. The cryo-fractured surface demonstrated the interfacial adhesion caused by the interaction of the epoxy group of the reactive compatibilizer with the terminal carboxyl and hydroxyl groups of PLA and PBAT. Moreover, PBAT reduced the crystallization rate and percent crystallinity of the PLA matrix and further decreased when compatibilizer was used. Alternatively, B1C2-PCH accelerated the heterogeneous nucleation and crystallization of the nanocomposite films. After adding small amount of B1C2-PCH, the nanocomposite films demonstrated excellent dielectric properties. Therefore, the improvement of PLA/PBAT nanocomposite blends are capable to be further developed as polymeric capacitor films.  相似文献   
207.
Haridas V  Lal K  Sharma YK  Upreti S 《Organic letters》2008,10(8):1645-1647
A series of novel triazolophanes containing peptidic and nonpeptidic backbones is reported. The crystal structure of one such macrocycle displays self-assembly through nonconventional hydrogen-bonding interactions.  相似文献   
208.
Our earlier investigations identified acetoxy drug: protein transacetylase (TAase), a unique enzyme in the endoplasmic reticulum (ER) catalyzing the transfer of acetyl groups from polyphenolic acetates (PA) to certain functional proteins. Recently we have established the identity of TAase with ER protein calreticulin (CR) and subsequently transacetylase function of CR was termed calreticulin transacetylase (CRTAase). CRTAase was purified and characterized from human placenta. CRTAase catalyzed the acetylation of a receptor protein nNOS, by a model PA 7, 8-diacetoxy-4-methylcoumarin (DAMC), which was visually confirmed by using antiacetyl lysine. The aim of this report was to provide tacit proof by providing mass spectrometry evidence for CRTAase catalyzed acetylation of purified nNOS by DAMC. For this purpose, purified nNOS was incubated with DAMC and CRTAase, the modified nNOS was analyzed by nanoscale LC-MS/MS, which recorded 11 distinct peptides with a significant score as acetylated on lysine residues. The distribution was in order: lysines-24, -33, -38, -131, and -229 of the PDZ domain, Lys-245 of the oxygenase domain, Lys-754 and -856 of FMN binding domain, Lys-989 of connecting domain and Lys-1300, -1321, and -1371 of the NADPH-binding domain were acetylated. The results documented in this paper highlighted for the first time modification of nNOS by way of acetylation. Our earlier work recorded the profound activation of platelet NADPH cytochrome P-450 reductase and the acetylation of the reductase protein by DAMC, which also remarkably enhanced intracellular levels of nitric oxide. The results reported here coupled with the aforementioned previous observations strongly implicate the possible role of the acetylation of the reductase domain of nitric oxide synthase (NOS) in the NOS activation. In addition, the acetylation of nNOS can be expected to potentiate the interaction with CR, eventually leading to the augmented catalytic activity of NOS and expression of the related biological effects.  相似文献   
209.
[reaction: see text] Among six different group VIb oxometallic species examined, dioxomolybdenum dichloride and oxomolybdenum tetrachloride were the most efficient catalysts to facilitate nucleophilic acyl substitution (NAS) of anhydrides with a myriad array of alcohols, amines, and thiols in high yields and high chemoselectivity. In contrast to the well-recognized redox chemical behaviors associated with oxomolybdenum(VI) species, the catalytic NAS was unprecedented and tolerates virtually all kinds of functional groups. By using benzoic anhydride as a mediator for in situ generation of an incipient mixed anhydride-MoO(2)Cl(2) adduct with a given functional alkanoic acid, one can achieve oleate, dipeptide, diphenylmethyl, N-Fmoc-alpha-amino, pyruvic, and tert-butylthio ester, N-tert-butylamide, and trityl methacrylate syntheses with appropriate protic nucleophiles. The amphoteric character of the Mo=O unit in oxomolybdenum chlorides was found to be responsible for the catalytic NAS profile as supported by a control NAS reaction of using an authentic adduct-MoOCl(2)(O(2)CBu(t)())(2) between pivalic anhydride and MoO(2)Cl(2) as the catalyst.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号