首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5885篇
  免费   1047篇
  国内免费   896篇
化学   4727篇
晶体学   102篇
力学   305篇
综合类   34篇
数学   696篇
物理学   1964篇
  2024年   21篇
  2023年   109篇
  2022年   158篇
  2021年   205篇
  2020年   275篇
  2019年   285篇
  2018年   229篇
  2017年   204篇
  2016年   327篇
  2015年   331篇
  2014年   375篇
  2013年   492篇
  2012年   524篇
  2011年   562篇
  2010年   398篇
  2009年   362篇
  2008年   379篇
  2007年   313篇
  2006年   325篇
  2005年   246篇
  2004年   244篇
  2003年   185篇
  2002年   233篇
  2001年   171篇
  2000年   122篇
  1999年   111篇
  1998年   69篇
  1997年   67篇
  1996年   49篇
  1995年   37篇
  1994年   53篇
  1993年   30篇
  1992年   26篇
  1991年   36篇
  1990年   30篇
  1989年   26篇
  1988年   33篇
  1987年   14篇
  1986年   15篇
  1985年   20篇
  1984年   10篇
  1983年   12篇
  1982年   10篇
  1981年   6篇
  1979年   6篇
  1978年   8篇
  1977年   6篇
  1976年   7篇
  1975年   8篇
  1974年   6篇
排序方式: 共有7828条查询结果,搜索用时 218 毫秒
991.
Journal of Radioanalytical and Nuclear Chemistry - The 110Pd(n,2n)109m,gPd reaction cross-sections and the isomeric cross section ratios (σm/σg) in the neutron energy range of...  相似文献   
992.
An amperometric aptasensor is reported for the electrochemical determination of the epithelial cell adhesion molecule (EpCAM). It is based on a combination of EpCAM-driven toehold-mediated DNA recycling amplification, the specific recognition of EpCAM aptamer, and its binding to EpCAM. Hairpin probe 1 (Hp1) with a toehold region was modified with a 5′-thiol group (5’-SH) and self-assembled onto the surface of a gold electrode. Upon addition of EpCAM, the probe A (a 15-mer) is liberated from the aptamer/probe A complex and then hybridizes with the toehold domain of Hp1. This results in the exposure of another toehold for further hybridizing with hairpin probe 2 (Hp2) to displace probe A in the presence of Hp2 that was labeled with the electrochemical probe Methylene Blue (MB). Subsequently, liberated probe A is hybridized again with another Hp1 to start the next round of DNA recycling amplification by reusing probe A. This leads to the formation of plenty of MB-labeled DNA strands on the electrode surface and generates an amplified current. This 1:N probe-response amplification results in ultrasensitive and specific detection of EpCAM, with a 20 pg·mL?1 detection limit. The electrode is highly stable and regenerable. It was successfully applied to the determination of EpCAM in spiked human serum, urine and saliva, and thus provides a promising tool for early clinical diagnosis.
Graphical abstract Schematic illustration of the electrochemical detection for EpCAM. The method is based on aptamer-based recognition and EpCAM-driven toehold-mediated DNA recycling amplification. Hp1: Hairpin probe 1; Hp2: Hairpin probe 2; MB: Methylene blue; MCH: 6-Mercapto-1-hexanol; EpCAM: Epithelial cell adhesion molecule.
  相似文献   
993.
A highly efficient asymmetric cyclopropanation of trisubstituted olefins with methyl diazoacetate has been developed in terms of an elaborate modified chiral bisoxazoline/copper complex as a catalyst. A broad scope of substrates is compatible with this catalyst system, including various trisubstituted olefins bearing different aryl-, fused aryl- and alkyl-substituents, providing an easy access to optically active 1,1-dimethyl cyclopropanes in good yields with excellent diastereo- and enantio-selectivity.  相似文献   
994.
Thiols and primary aliphatic amines (PAA) are ubiquitous and extremely important species in biological systems. They perform significant interplaying roles in complex biological events. A single fluorescent probe differentiating both thiols and PAA can contribute to understanding the intrinsic inter‐relationship of thiols and PAA in biological processes. Herein, we rationally constructed the first fluorescent probe that can respond to thiols and PAA in different fluorescence channels. The probe exhibited a high selectivity and sensitivity to thiols and PAA. In addition, it displayed sequential sensing ability when the thiols and PAA coexisted. The application experiments indicated that the probe can be used for sensing thiols and PAA in human blood serum. Moreover, the fluorescence imaging of endogenous thiols and PAA as well as antihypertensive drugs captopril and amlodipine in living cells were successfully conducted.  相似文献   
995.
The tandem hydrolysis and hydrogenation of saccharides into sorbitol is an especially attractive reaction in the conversion of biomass. Here, an economical and efficient bimetallic catalyst for the transformation of glucose and cellobiose into sorbitol is reported. Non-precious metal based catalysts such as NiCo, Ni, and Co, were prepared via modified impregnation method, and NiCo/HZSM-5 showed superior performance for the synthesis of sorbitol (86.9% from cellobiose, 98.6% from D-glucose). Various characterizations, such as Brunner-Emmet-Teler (BET), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), confirmed that NiCo alloy formed and highly dispersed in NiCo/HZSM-5 catalyst. The high performance of fabricated catalyst would be attributed to the formation of nickel-cobalt alloy over HZSM-5 zeolite surface. High temperature and H2 pressure were favorable for the tandem hydrolysis and hydrogenation reaction. Besides, the reaction pathway was also proposed based on the kinetics study. Cellobitol was detected as the intermediate in the reaction mixture. Furthermore, in the catalytic stability study, it was found that active metal species of NiCo/HZSM-5 were stable. The deactivation of catalyst would be due to the covering of acidic sites over NiCo/HZSM-5.  相似文献   
996.
Diastereo‐ and enantioselective cycloaddition of 3‐nitroindoles with vinyl aziridine was realized under Pd‐catalysis using commercially available Walphos as the ligand, affording pyrroloindolines in high yields with high diastereo‐ and enantioselectivities. The reaction can be scaled up to a gram scale and the reaction products are easily converted to amino pyrroloindoline and other pyrroloindoline derivatives.  相似文献   
997.
[Bis(imidazolyl)–BH2]+[bis(triazolyl)–BH2]? and [bis(imidazolyl)–BH2]+[tris(triazolyl)–BH]? were synthesized, the cations and anions of which were functionalized with B?H groups and azoles. As B?H groups contribute to the hypergolic activity and azole groups improve the energy output, the resulting ionic liquids exhibited ignition delay times as low as 20 ms and energy outputs as high as 461.1 kJ mol?1. In addition, densities (1.07–1.22 g cm?3) and density‐specific impulse (≈360 s g cm?3) values reached a relatively high level. These ionic liquids show great promise as sustainable rocket fuels.  相似文献   
998.
The development of cost-effective, durable and high-efficient oxygen evolution reaction (OER) electrocatalysts is an extremely critical technology for the large-scale industrial water electrolysis. Here, a new strategy is proposed to significantly enhance the electrocatalytic activity by forming a hybrid electrode of NiSe and Fe4.4Ni17.6Se16 through direct selenization of porous iron-nickel (FeNi) alloy foam via thermal selenization process. The obtained self-supported Fe4.4Ni17.6Se16/NiSe hybrid (FNS/NiSe) foam displays outstanding durability and remarkable catalytic activity in 1.0 M KOH with low overpotentials of 242 and 282 mV to achieve the current densities of 100 and 500 mA cm?2, respectively. To the best of our knowledge, it exceeds most of the reported OER electrocatalysts in alkaline electrolytes.  相似文献   
999.
It remains highly desired but a great challenge to achieve atomically dispersed metals in high loadings for efficient catalysis. Now porphyrinic metal–organic frameworks (MOFs) have been synthesized based on a novel mixed‐ligand strategy to afford high‐content (1.76 wt %) single‐atom (SA) iron‐implanted N‐doped porous carbon (FeSA‐N‐C) via pyrolysis. Thanks to the single‐atom Fe sites, hierarchical pores, oriented mesochannels and high conductivity, the optimized FeSA‐N‐C exhibits excellent oxygen reduction activity and stability, surpassing almost all non‐noble‐metal catalysts and state‐of‐the‐art Pt/C, in both alkaline and more challenging acidic media. More far‐reaching, this MOF‐based mixed‐ligand strategy opens a novel avenue to the precise fabrication of efficient single‐atom catalysts.  相似文献   
1000.
Low‐cost multivalent battery chemistries (Mg2+, Al3+) have been extensively investigated for large‐scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li+, Mg2+, Al3+) at an extremely fast rate. The ion‐coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (?40 to 50 °C), making the low‐cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion‐coordinated mechanism opens a new foundation for the development of high‐energy and high‐power multivalent batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号