首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2071篇
  免费   76篇
  国内免费   16篇
化学   1318篇
晶体学   43篇
力学   83篇
数学   284篇
物理学   435篇
  2023年   11篇
  2022年   55篇
  2021年   49篇
  2020年   57篇
  2019年   60篇
  2018年   71篇
  2017年   69篇
  2016年   88篇
  2015年   69篇
  2014年   86篇
  2013年   200篇
  2012年   126篇
  2011年   185篇
  2010年   108篇
  2009年   110篇
  2008年   132篇
  2007年   130篇
  2006年   97篇
  2005年   76篇
  2004年   60篇
  2003年   56篇
  2002年   58篇
  2001年   25篇
  2000年   19篇
  1999年   6篇
  1998年   16篇
  1997年   12篇
  1996年   16篇
  1995年   5篇
  1994年   5篇
  1993年   11篇
  1992年   13篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   7篇
  1984年   12篇
  1983年   3篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1979年   4篇
  1977年   4篇
  1975年   6篇
  1974年   3篇
  1973年   2篇
  1967年   1篇
  1936年   1篇
排序方式: 共有2163条查询结果,搜索用时 312 毫秒
71.
The steady laminar boundary layer flow and heat transfer past a stretching sheet arre considered. Upper‐convected Maxwell (UCM) fluid is treated as a rheological model. The resulting nonlinear differential system is solved by homotopy analysis method (HAM). The influence of melting parameter (M), Prandtl number (Pr), Deborah number (β) and stretching ratio (A = a/c) on the velocity and temperature profiles is thoroughly examined. It is noticed that fields are effected appreciably with the variation of parameters. Furthermore, it is seen that the local Nusselt number is a decreasing function of melting parameter. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
72.
In this study, nano hydroxyapatite doped with yttrium (2.5, 5, and 7.5 mol%) and fluoride (2.5 mol%) ions were synthesized by precipitation method and sintered at 900°C, 1100°C, and 1300°C. Raman spectroscopy was applied to track the structural modifications in pure and doped hydroxyapatites. The results showed that the main characteristic band of pure hydroxyapatite at 963 cm?1 was not affected significantly by ion doping but exhibited higher intensity with increasing sintering temperature. Due to fluoride substitution, the 1048 and 1034 cm?1 bands of pure hydroxyapatites appeared with a wavenumber shift in the spectra of ion-doped hydroxyapatites. The 333 cm?1 band of pure hydroxyapatite disappeared and an additional calcium–fluor bond at 322 cm?1 was observable in ion-doped hydroxyapatites. Two fluorescence bands at 770 and 697 cm?1, which were also observed in the spectra of pure hydroxyapatites, shifted to higher wavenumbers in the spectra of ion-doped hydroxyapatites. This was considered to result from the perturbation in the hexagonal structure of hydroxyapatite due to yttrium and fluoride codoping.  相似文献   
73.
The aim of this paper is to study the laser-induced backside wet cleaning techniques for glass substrates. Two kinds of laser cleaning techniques are proposed in this study. The first involves applying an Nd:YAG laser to the backside of the substrate which is submerged in water. A metal plate is placed below the glass substrate. Most of the laser energy will be absorbed by the metal plate. The metal then vaporizes the water and generates a turbulent bubble flow. The bubble flow removes the alumina particles from the surface of the glass substrate. The second involves using a CO2 laser to generate turbulent bubble flow to remove the particles. Both methods were successfully demonstrated for the removal of submicron particles of 0.5 μm in size. The phenomena of bubble generation and diffusion are presented in the paper. Because the laser is applied to the backside of the substrate, the damage due to the laser heat can be significantly reduced. The quality and efficient of the backside processing is better than those of the front side processing. The proposed techniques have great potential to provide an improved solution for glass cleaning.  相似文献   
74.
In this study, a novel sorbent material bearing a bis(aldimine) group was designed and successfully synthesized by covalently bonding a 2-[N,N′-bis(salicylaldimine)]aminoethyl amine ligand to the silica gel surface that was characterized by carbon, hydrogen, and nitrogen elemental analysis, thermogravimetric analysis, and the Fourier transform infrared spectroscopy technique. The sorbent was used for the online solid-phase extraction (SPE) of Cd(II), Cu(II), and Co(II) ions for their determination at trace concentration levels by flame atomic absorption spectrometry. The effective factors for the online SPE such as the pH and the flow rate of the sample solution, and type, volume, and flow rate of eluent were investigated. The concentration levels of Cd(II), Cu(II), and Co(II) were measured in certified reference materials including Virginia tobacco leaves (CTA-VTL-2) and water-trace elements (NWTM-15.2) to validate this method. The metal levels in environmental water were determined by this method, and the values were checked by spiking and recovery experiments and independent analysis by inductively coupled plasma-mass spectrometry. The adsorption capacities of the sorbent were found to be 41.2, 31.6, and 25.6?mg/g for Cd(II), Cu(II), and Co(II), respectively. This method was also successfully used for the determination of Cd(II), Cu(II), and Co(II) concentrations in rice and molasses.  相似文献   
75.
Efficient and modular syntheses of chiral 2-(2-hydroxyaryl)alcohols (HAROLs), novel 1,4-diols carrying one phenolic and one alcohol hydroxyl group, have been developed which led to generation of a small library of structurally diverse HAROLs in enantiomerically pure form. Of the different HAROLs examined, a HAROL based on the indan backbone exhibited the highest activity and enantioselectivity in the 1,2-addition of certain organometallic compounds to aldehydes in the presence of Ti(OiPr)4 (up to 97% y, 88% ee) and performed as a hydrogen-bond donor organocatalyst in the Morita-Baylis-Hillman reaction, promoted by trialkylphosphines.  相似文献   
76.
77.
Functional polymer/AgNPs nanocomposites have been prepared. Silver nanoparticles (NPs) were synthesized to which polyacrylamide, PAAm, was covalently bound. PAAm was synthesized via a RAFT reaction and carried thiol and carboxylic acid end groups. Thiol was used to bind the polymer to the metal surface and carboxyl for further reactions. The AgNPs were used in a post‐crosslinking reaction with a separately synthesized poly(butyl acrylate‐co‐methyl methacrylate)/polyglycidyl methacrylate core/shell latex bearing epoxy functional groups. Dynamic mechanical analysis showed that the functional AgNPs effectively crosslinked the latex polymer, and that the final product had excellent mechanical strength. Antibacterial tests revealed that the nanocomposite films had strong antibacterial activity against all types of the bacteria and the immobilization of silver NPs by crosslinking retarded the release of silver in comparison to the uncrosslinked ones. With the presented method, it is possible to obtain ductile antibacterial nanocomposites to be used as waterborne functional coatings. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1435–1447  相似文献   
78.
The mole and Avogadro’s number are two important concepts of science that provide a link between the properties of individual atoms or molecules and the properties of bulk matter. It is clear that an early theorist of the idea of these two concepts was Avogadro. However, the research literature shows that there is a controversy about the subjects of when and by whom the mole concept was first introduced into science and when and by whom Avogadro’s number was first calculated. Based on this point, the following five matters are taken into consideration in this paper. First, in order to base the subject matter on a strong ground, the historical development of understanding the particulate nature of matter is presented. Second, in 1811, Amedeo Avogadro built the theoretical foundations of the mole concept and the number 6.022 × 1023 mol?1. Third, in 1865, Johann Josef Loschmidt first estimated the number of molecules in a cubic centimetre of a gas under normal conditions as 1.83 × 1018. Fourth, in 1881, August Horstmann first introduced the concept of gram-molecular weight in the sense of today’s mole concept into chemistry and, in 1900, Wilhelm Ostwald first used the term mole instead of the term ‘gram-molecular weight’. Lastly, in 1889, Károly Than first determined the gram-molecular volume of gases under normal conditions as 22,330 cm3. Accordingly, the first value for Avogadro’s number in science history should be 4.09 × 1022 molecules/gram-molecular weight, which is calculated by multiplying Loschmidt’s 1.83 × 1018 molecules/cm3 by Than’s 22,330 cm3/gram-molecular weight. Hence, Avogadro is the originator of the ideas of the mole and the number 6.022 × 1023 mol?1, Horstmann first introduced the mole concept into science/chemistry, and Loschmidt and Than are the scientists who first calculated Avogadro’s number. However, in the science research literature, it is widely expressed that the mole concept was first introduced into chemistry by Ostwald in 1900 and that Avogadro’s number was first calculated by Jean Baptiste Perrin in 1908. As a result, in this study, it is particularly emphasised that Horstmann first introduced the mole concept into science/chemistry and the first value of Avogadro’s number in the history of science was 4.09 × 1022 molecules/gram-molecular weight and Loschmidt and Than together first calculated this number.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号