首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   16篇
  国内免费   2篇
化学   155篇
晶体学   7篇
力学   4篇
数学   27篇
物理学   58篇
  2024年   1篇
  2023年   5篇
  2022年   3篇
  2021年   7篇
  2020年   15篇
  2019年   6篇
  2018年   9篇
  2017年   7篇
  2016年   15篇
  2015年   12篇
  2014年   9篇
  2013年   23篇
  2012年   14篇
  2011年   21篇
  2010年   10篇
  2009年   14篇
  2008年   12篇
  2007年   15篇
  2006年   12篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1985年   1篇
  1984年   3篇
  1980年   3篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有251条查询结果,搜索用时 31 毫秒
241.
In this study, four novel silafluorene (SiF) and benzotriazole (Btz) bearing conjugated polymers are synthesized. In the context of electrochemical and optical studies, these polymers are promising materials both for electrochromic device (ECD) and polymer solar cell (PSC) applications. All of the polymers are ambipolar (both p‐ and n‐dopable) and multichromic. Electrochemistry experiments indicate that incorporation of selenophene instead of thiophene unit increases the HOMO energy level of the polymers. Power conversion efficiency of the PSCs reached 1.75% for PTBTSiF, 1.55% for PSBSSiF, 2.57% for PBTBTSiF, and 1.82% for PBSBSSiF. The hole mobilities of the polymers are estimated through space charge limited current (SCLC) model. PBTBTSiF has the highest hole mobility as 2.44 × 10?3 cm2 V s?1. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1541–1547  相似文献   
242.
243.
The fabrication of amperometric biosensors based on whole cell Gluconobacter oxydans DSMZ 2343 (G. oxydans) and glucose oxidase (GOx) was performed for the detection of glucose. Glassy carbon electrodes (GCE) were coated with a 10-(4H-dithiyeno [3,2-b:2’,3’-d]pyroll-4-il)decan-1-amine (DTP-alkyl-NH2) polymer using an electropolymerization method and the formed interface was used to connect the bacteria and the enzyme to the electrode. The transfer of electrons from enzyme to electrode was successfully demonstrated by the biocatalytic activity and unique morphology of the conducting polymer. Characterization of the biosensors was assessed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analyses. The detection limits of the enzyme and microbial based biosensors for glucose were 0.022 and 0.081?mM, respectively. The broad linear dynamic ranges of the GOx and G. oxydans biosensors were observed to be 0.045–50.0 and 0.19–50.0?mM, respectively. The analytical performances of biosensors were compared according to the following figures of merit: detection limits, limits of quantification, pH and current response time. In addition, to demonstrate the applicability of the biosensors, real-time measurements and recovery studies were evaluated.  相似文献   
244.
245.
In-depth probing of the surface electronic structure on solid oxide fuel cell (SOFC) cathodes, considering the effects of high temperature, oxygen pressure, and material strain state, is essential toward advancing our understanding of the oxygen reduction activity on them. Here, we report the surface structure, chemical state, and electronic structure of a model transition metal perovskite oxide system, strained La(0.8)Sr(0.2)CoO(3) (LSC) thin films, as a function of temperature up to 450 °C in oxygen partial pressure of 10(-3) mbar. Both the tensile and the compressively strained LSC film surfaces transition from a semiconducting state with an energy gap of 0.8-1.5 eV at room temperature to a metallic-like state with no energy gap at 200-300 °C, as identified by in situ scanning tunneling spectroscopy. The tensile strained LSC surface exhibits a more enhanced electronic density of states (DOS) near the Fermi level following this transition, indicating a more highly active surface for electron transfer in oxygen reduction. The transition to the metallic-like state and the relatively more enhanced DOS on the tensile strained LSC at elevated temperatures result from the formation of oxygen vacancy defects, as supported by both our X-ray photoelectron spectroscopy measurements and density functional theory calculations. The reversibility of the semiconducting-to-metallic transitions of the electronic structure discovered here, coupled to the strain state and temperature, underscores the necessity of in situ investigations on SOFC cathode material surfaces.  相似文献   
246.
Two series of CdSe quantum dots (QDs) with different diameters are prepared, according to frequently used protocols of the same synthetic procedure. For each sample the photophysical properties and the potentials for the first reduction and oxidation processes in organic solution are determined. The band gap obtained from electrochemical experiments is compared with that determined from the absorption and luminescence spectra. While the optical band gap decreases upon increasing the nanocrystal diameter, as expected on the basis of quantum confinement, the redox potentials and the electrochemical band gap are not monotonously related to the QD size. For both series, the smallest and largest QDs are both easier to oxidize and reduce than mid‐sized QDs. In fact, the latter samples exhibit very broad voltammetric profiles, which suggests that the heterogeneous electron‐transfer processes from/to the electrode are kinetically hindered. Conversely, the electrochemical band gap for the smallest and largest particles of each series is somewhat smaller than the optical band gap. These results indicate that, while the optical band gap depends on the actual electron–hole recombination within the nanocrystal, and therefore follows the size dependence expected from the particle‐in‐a‐box model, the electrochemical processes of these QDs are strongly affected by other factors, such as the presence of surface defects. The investigations suggest that the influence of these defects on the potential values is more important for the smallest and largest QDs of each series, as confirmed by the respective luminescence bands and quantum yields. An interpretation for the size‐dependent evolution of the surface defects in these nanocrystals is proposed based on the mechanism of their formation and growth.  相似文献   
247.
1,2,4-Triazole-fluoroquinolone and 1,2,4-triazole–conazole hybrids are designed, synthesized, and investigated in vitro against a variety of common diseases. The structure of the newly synthesized compounds are characterized from spectral data (IR, 1H NMR, 13C NMR, and LC–MS). The antibacterial activity against both Gram-positive and Gram-negative bacteria is shown to be enhanced by many of the produced compounds. Also, some of the products are found to have strong antiproliferative effects aganist HeLa cervical cancer cells, whilst demonstrating cytotoxic effects toward normal cells.  相似文献   
248.
The photosensitized generation of singlet oxygen within tumor tissues during photodynamic therapy (PDT) is self‐limiting, as the already low oxygen concentrations within tumors is further diminished during the process. In certain applications, to minimize photoinduced hypoxia the light is introduced intermittently (fractional PDT) to allow time for the replenishment of cellular oxygen. This condition extends the time required for effective therapy. Herein, we demonstrated that a photosensitizer with an additional 2‐pyridone module for trapping singlet oxygen would be useful in fractional PDT. Thus, in the light cycle, the endoperoxide of 2‐pyridone is generated along with singlet oxygen. In the dark cycle, the endoperoxide undergoes thermal cycloreversion to produce singlet oxygen, regenerating the 2‐pyridone module. As a result, the photodynamic process can continue in the dark as well as in the light cycles. Cell‐culture studies validated this working principle in vitro.  相似文献   
249.
Herein, we disclose cyclic(alkyl)(amino)carbenes (CAACs) to be one-electron reductants under the formation of a transient radical cation as indicated by EPR spectroscopy. The disclosed CAAC reducing reactivity was used to synthesize acyclic(amino)(aryl)carbene-based Thiele and Chichibabin hydrocarbons, a new class of Kekulé diradicaloids. The results demonstrate CAACs to be potent organic reductants. Notably, the acyclic(amino)(aryl)carbene-based Chichibabin's hydrocarbon shows an appreciable population of the triplet state at room temperature, as evidenced by both variable-temperature NMR and EPR spectroscopy.  相似文献   
250.
In this work, thermal solution imidization kinetics of two high performance polyimides, prepared from the polycondensation of pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) with 4,4′-bis(3-aminophenoxy)diphenylsulfone (DAPDS) were investigated using nonaqueous titration technique with tetramethylammonium hydroxide. Most of the kinetic investigations, found in the literature, are based on the aromatic p-diamines.1,2 In the present work, attention was focused on imidization kinetics with m-substituted aromatic diamines having electron donating ( O ) and electron withdrawing ( SO2 ) groups in the same molecule. Kinetic parameters, namely the rate constants, activation energies, entropies and enthalpies of imidization reactions were determined and compared with the literature values. It is reported in literature3 that electron affinities of dianhydrides and ionization potentials of diamines, have strong influence on the reaction rate and activation energies of imidization. Activation energy (Ea) values were found to be 66 and 57 kJ/mol for DAPDS/PMDA and DAPDS/BTDA respectively, and order of reaction was found to be second order. Polyimides DAPDS/PMDA and DAPDS/BTDA, subjected to kinetic investigation, showed glass transition temperatures of 267°C and 241°C, both were found to be thermally stable up to 500°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2981–2990, 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号