Abstract. A novel germanate compound, |[Ni(dien)2]3(H2O)3|[Ge7O13F5]2(designated JU‐85, dien = diethylenetriamine), was solvothermally synthesized. The structure of JU‐85 was determined by single‐crystal X‐ray diffraction and further characterized by powder X‐ray diffraction, inductively coupled plasma, infrared spectroscopy, elemental analysis, and thermogravimetric analysis. JU‐85 has dissymmetric chains constructed from diagonally linked Ge7 building units and various Ni(dien)22+ complexes formed in situ during the synthesis. Compared with its structural analogue, FJ‐6, JU‐85 contains less complex cations and different host‐guest assembly. Besides the diagonal linkage in JU‐85, other dissymmetric linkages of Ge7 building units were enumerated, which could be used as the stereogenic centers for the design of novel chiral germanate compounds. 相似文献
Determination of the levels of 1-octacosanol is important in food stuff for the study of its pharmacological activities and health benefits. In this study, a novel, simple and fast internal standard method for the non-derivatization ultra-performance liquid chromatographic determination of 1-octacosanol in raw materials and health products was developed and validated based on evaporative light scattering detection. The linearity (r2 > 0.998), recovery (99.1–100.2%, RSD <2.7%), intra- and inter-day precision (RSD <3.8%), limit of detection (1.0 mg/L), limit of quantification (2.2 mg/L) of the 1-octacosanol were determined. The method was successfully applied to nine real 1-octacosanol products. The results of analyses had close agreement with the labeled claims of 1-octacosanol content in these products. Compared with the classical gas chromatography method, the developed method was simpler, faster and more environmentally friendly due to avoiding any derivatization step. This protocol represents a rapid and feasible method for quality control of 1-octacosanol products.
By means of the generalized static replica symmetric spin glass theory, a quantum HeisenbergS=1/2 spin glass model with the infinite-ranged random Dzyaloshinskii-Moriya (DM) interaction and ferromagnetic coupling is investigated. The dependence of entropy, specific heat, susceptibility and the corresponding order parameters on temperature is studied numerically for different ferromagnetic interactions and fixed anisotropy. Two spin glass phases has been found including transverse and mixed spin glass phases. It has been shown that the local susceptibility exhibits double-cusp features for different ferromagnetic coupling (J0). Phase transition poins are found in the specific heat-temperature plane at various ferromagnetic coupling values. Additionally, the dependence of the spontaneous moment on temperature is calculated. 相似文献
A new type of wave existing in the frequency domain is deduced and named a frequency wave. For a homogeneous medium, we have obtained the approximate and rigorous solutions of a frequency shift equation for plane radiation under some special, one-sided or two-sided frequency shift conditions. 相似文献