全文获取类型
收费全文 | 33088篇 |
免费 | 5515篇 |
国内免费 | 5086篇 |
专业分类
化学 | 24941篇 |
晶体学 | 417篇 |
力学 | 1664篇 |
综合类 | 494篇 |
数学 | 3842篇 |
物理学 | 12331篇 |
出版年
2024年 | 79篇 |
2023年 | 524篇 |
2022年 | 966篇 |
2021年 | 1020篇 |
2020年 | 1216篇 |
2019年 | 1257篇 |
2018年 | 1048篇 |
2017年 | 1026篇 |
2016年 | 1596篇 |
2015年 | 1694篇 |
2014年 | 1889篇 |
2013年 | 2484篇 |
2012年 | 2918篇 |
2011年 | 3020篇 |
2010年 | 2310篇 |
2009年 | 2251篇 |
2008年 | 2468篇 |
2007年 | 2178篇 |
2006年 | 2158篇 |
2005年 | 1774篇 |
2004年 | 1459篇 |
2003年 | 1287篇 |
2002年 | 1248篇 |
2001年 | 952篇 |
2000年 | 817篇 |
1999年 | 685篇 |
1998年 | 504篇 |
1997年 | 413篇 |
1996年 | 403篇 |
1995年 | 333篇 |
1994年 | 290篇 |
1993年 | 243篇 |
1992年 | 207篇 |
1991年 | 178篇 |
1990年 | 130篇 |
1989年 | 99篇 |
1988年 | 87篇 |
1987年 | 84篇 |
1986年 | 67篇 |
1985年 | 58篇 |
1984年 | 34篇 |
1983年 | 43篇 |
1982年 | 17篇 |
1981年 | 22篇 |
1980年 | 15篇 |
1977年 | 13篇 |
1976年 | 10篇 |
1975年 | 13篇 |
1973年 | 15篇 |
1970年 | 9篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
231.
黄土高原地区作为气候敏感区和生态脆弱区地表干 湿状况的年际和年代际变化特征十分明显. 但以往主要是针对夏季进行分析, 而对黄土高原秋季干湿变化规律及大气环流机理的认识非常有限. 本文基于中国589站最近50 a (1961–2010年)月降水和气温月平均资料、NCEP/NCAR提供的再分析资料以及NOAA提供的海表温度(Sea Surface Temperature, SST) 资料, 运用带通/低通滤波、小波分析、EOF/REOF和回归分析等方法, 在对中国秋季干湿时空演化分类的基础上, 通过研究秋季黄土高原中部干湿演变周期、大气环流特征及与海温的多尺度相关关系, 以揭示影响黄土高原中部秋季干湿变化的物理机理, 并确定影响该区域干湿状况的前兆信号. 小波功率谱分析表明, 黄土高原中部秋季干湿指数存在准4 a和准8 a的周期, 1970–1990年准8 a尺度周期振荡尤为明显. 年际(周期≤ 8 a) 尺度上偏湿年的大气环流特征是, 欧亚大陆中高纬呈“双阻型”, 200 hPa西风急流显著北移, 日本海-鄂霍茨克海受反气旋控制, 其底部的偏东水汽输送带将水汽输入研究区. 年代际(周期 > 8 a)尺度上偏湿年的大气环流特征是, 东亚大陆为一致的低值系统; 200 hPa东亚副热带西风急流减弱北移, 研究区主要水汽来源由经孟加拉湾在中南半岛转向的南风水汽输送及中纬度的西风水汽输送组成. 整个序列上, Nino3区SST指数(Nino3I)超前5个月与秋季干湿指数已呈显著的负相关关系, 而孟加拉湾–中国南海SST指数(BayI)则超前3个月与干湿指数呈现显著的负相关关系. 年际尺度上, 秋季Nino3I, BayI均与秋季干湿指数存在显著相关(准4 a, 4–6 a), 而年代际尺度上, 只有BayI与秋季干湿指数存在显著相关性(准10 a). 黄土高原中部秋季干湿的年际和年代际周期的确定、大气环流异常特征的认识及与海温的多尺度相关关系的建立, 不仅揭示了影响该区域干湿变化的物理机理, 也为干旱气候预测提供了重要的前兆信号.
关键词:
黄土高原中部
干湿特征
海表温度
小波分析 相似文献
232.
The optimized geometries, complexation energies, etc. of HXPY (X?=?Al, B; Y?=?H, F, OH) donor–acceptor complexes have been investigated at the B3LYP/6-311+G(d,p), MP2/6-311+G(d,p) and/or CCSD(T)/6-311+G(d,p) levels. The results show that HBPY (Y?=?H, F, OH) is more stable than the corresponding HAlPY (Y?=?H, F, OH), F (or OH) substitution on phosphorus results in decreasing complex stability, and the stronger the electron-attracting nature of the substitution atom, the more stable the complex. Moreover, the thermodynamic and kinetic properties of the formation reaction of these donor–acceptor complexes were also examined within the temperature range 200–800?K using the general statistical thermodynamics and Eyring transition state theory with Wigner correction. It is concluded that the formation of HBPY is thermodynamically favoured over that of the corresponding HAlPY, especially at low temperature, and is kinetically favoured over that of the relevant HAlPY (Y?=?H, F, OH), especially at high temperature. 相似文献
233.
Chellachamy Anbalagan Amarnath Sitansu Sekhar Nanda Georgia C. Papaefthymiou Dong Kee Yi Ungyu Paik 《固体与材料科学评论》2013,38(1):1-56
Nanomaterials have attracted much attention from academic to industrial research. General methodologies are needed to impose architectural order in low-dimensional nanomaterials composed of nanoobjects of various shapes and sizes, such as spherical particles, rods, wires, combs, horns, and other non specified geometrical architectures. These nanomaterials are the building blocks for nanohybrid materials, whose applications have improved and will continuously enhance the quality of the daily life of mankind. In this article, we present a comprehensive review on the synthesis, dimension, properties, and present and potential future applications of nanomaterials and nanohybrids. Due to the large number of review articles on specific dimension, morphology, or application of nanomaterials, we will focus on different forms of nanomaterials, such as, linear, particulate, and miscellaneous forms. We believe that almost all the nanomaterials and nanohybrids will come under these three categories. Every form or dimension or morphology has its own significant properties and advantages. These low-dimensional nanomaterials can be integrated to create novel nano-composite material applications for next-generation devices needed to address the current energy crisis, environmental sustainability, and better performance requirements. We discuss the synthesis, properties, and morphology of different forms of nanomaterials (building blocks). Moreover, we elaborate on the synthesis, modification, and application of nanohybrids. The applications of these nanomaterials and nanohybrids in sensors, solar cells, lithium batteries, electronic, catalysis, photocatalysis, electrocatalysis, and bio-based applications will be detailed. The time is now ripe to explore new nanohybrids that use individual nanomaterial components as basic building blocks, potentially affording additionally novel behavior and leading to new, useful applications. In this regard, the combination or integration of linear nanorods/nanowires and spherical nanoparticles to produce mixed-dimensionality, higher-level nanocomposites of greater complexity is an interesting theme, which we explore in this review article. 相似文献
234.
Jr‐Sheng Tian Chun‐Yen Peng Wei‐Lin Wang Yue‐Han Wu Yi‐Sen Shih Kun‐An Chiu Yen‐Teng Ho Ying‐Hao Chu Li Chang 《固体物理学:研究快报》2013,7(4):293-296
Semipolar (11\bar 2 \bar 2) ZnO was successfully grown on (112) LaAlO3/(LaAlO3)0.29(Sr2AlTaO6)0.35 substrate by pulsed laser deposition. The epitaxial relationship is [11\bar 23]_{\rm ZnO} // [11\bar 1]_{\rm LAO/LSAT} with the polar axis of [000\bar 1]_{\rm ZnO} pointing to the surface. For ZnO films with thickness of 1.6 μm, the threading dislocation density is ~1 × 109 cm–2, and the density of basal stacking faults is below 1 × 104 cm–1. The (11\bar 2 \bar 2) ZnO exhibits strong D0X emissions with a FWHM of 9 meV and very few green–yellow emissions in the low‐temperature (10 K) and room‐temperature photoluminescence spectra, respectively.
235.
Thomas-Fermi model can be applied to describe state of electrons for mixtures. A method to solve the mixture Thomas-Fermi equation is proposed. With the proper initial test solution and step length, this method searches the solution in a way that reduces the steps by half, which can get solutions with various densities and temperatures fast. 相似文献
236.
Z. H. Zhou Q. F. Yi L. H. Liu Y. M. Zhao X. P. Liu J. N. Zhou 《Journal of Macromolecular Science: Physics》2013,52(5):940-952
In vitro degradation experiments of poly-L-lactic acid (PLLA) and bovine bone (BB) composites were carried out in a phosphate-buffered solution (PBS) at 37°C with a pH of 7.4. The influence of BB content on pH value of PBS, water uptake, molecular weights, molecular weight distributions, weight losses, mechanical strengths, and morphologies of PLLA/BB was investigated with degradation times. The results indicated that the presence of the BB modified the degradation of the PLLA matrix. The degradation rate of PLLA in the PLLA/BB composite was slower than the degradation rate of the sole PLLA material. Furthermore, the degradation rate of the composites became slower with the increasing content of BB in PLLA/BB composites. 相似文献
237.
Yuanxiang Gu Fangfang Jian Wei Yi Jing Wang 《Journal of Macromolecular Science: Physics》2013,52(1):179-187
One-dimensional (1D) fiber structures of simple amphiphilic molecules were prepared through a facile precipitation route. The self-assembly process was studied by ultraviolet-visible absorption and Fourier transform infrared) spectroscopy, which indicated that hydrogen bonding interactions played a role in the1D growth along the axis of the fiber. The water content, self-assembling temperature, and concentration of 1,5-bis-(1-(pyridin-2-yl)ethylidene)thiocarbonohydrazide molecules in the solution had obvious effects on the size and morphology of the self-assembled products. The formation of1D superstructures is not only of a hot subject in the process of nanoscience but also opens a new venue for conveniently controlling self-assembled structures of similar organic molecules. 相似文献
238.
Chufeng Sun Ming Zhang Feng Zhou Ping Gao Yanqiu Xia Weimin Liu 《Journal of Macromolecular Science: Physics》2013,52(5):1006-1017
Multiply-alkylated cyclopentanes (MACs) composite thin films containing Cu nanoparticles are fabricated on the octadecyltrichlorosilane (OTS)-modified substrate by a spin-coating technique. The thickness, wetting behavior, and nanoscale morphologies of the films are characterized by means of ellipsometry, contact angle measurement, and atomic force microscope (AFM). The friction and wear behaviors of the thin films sliding against Si3N4 ball are examined on a UMT-2MT tribometer in a ball-on-disk contact mode. The worn surfaces of the OTS-MAC-Cu composite film and the counterpart Si3N4 balls are investigated with a scanning electron microscope. Water contact angle on OTS-MAC-Cu composite film is higher than that of OTS-MAC film. OTS-MAC-Cu composite film exhibits higher load-carrying capacity and better friction reduction and antiwear behavior as compared with OTS-MAC film. This may be attributed to the load-carrying and self-repairing property of the Cu nanoparticles in the composite film and the formation of a transfer layer composed of OTS, MAC, and Cu on the rubbing surface of the counterpart ball. 相似文献
239.
240.
ABSTRACT The interaction between phenformin hydrochloride and bovine serum albumin (BSA) was investigated by the methods of chemiluminescence combined with equilibrium dialysis technique. A novel N-bromosuccinimide (NBS)–eosin Y (EY) chemiluminescence (CL) method was established for the determination of phenformin. The mechanism of this chemiluminescence system was proposed. Optimization studies were performed to determine the phenformin. Under the optimal conditions, the CL intensity was linear for a phenformin concentration over the range of 4.6 × 10?8 to 5.0 × 10?5 g/mL. The detection limit was 1.5 × 10?8 g/mL. The data obtained by the present equilibrium dialysis–CL system were analyzed using the Klotz plot and the Scatchard analysis. The results showed that the Klotz plot and the Scatchard plot are linear with good correlation coefficient, indicating that the phenformin has only one type of binding site on BSA. The binding parameters were the number of the binding sites n (1.02) and the estimated association constant K (2.66 × 104 L/mol). The chemiluminescence system combined with equilibrium dialysis developed in this work demonstrated its use for determination of interaction between drug and protein by using relatively simple instrument. 相似文献