首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146413篇
  免费   25386篇
  国内免费   13596篇
化学   113924篇
晶体学   1409篇
力学   7691篇
综合类   777篇
数学   15241篇
物理学   46353篇
  2024年   397篇
  2023年   2310篇
  2022年   3994篇
  2021年   4416篇
  2020年   5444篇
  2019年   6354篇
  2018年   4631篇
  2017年   4123篇
  2016年   8193篇
  2015年   8260篇
  2014年   9266篇
  2013年   11663篇
  2012年   12739篇
  2011年   12126篇
  2010年   9434篇
  2009年   9173篇
  2008年   9223篇
  2007年   7943篇
  2006年   7258篇
  2005年   6436篇
  2004年   5297篇
  2003年   4335篇
  2002年   4810篇
  2001年   3698篇
  2000年   3505篇
  1999年   2864篇
  1998年   2107篇
  1997年   2020篇
  1996年   2044篇
  1995年   1695篇
  1994年   1525篇
  1993年   1289篇
  1992年   1147篇
  1991年   964篇
  1990年   843篇
  1989年   637篇
  1988年   548篇
  1987年   480篇
  1986年   403篇
  1985年   362篇
  1984年   277篇
  1983年   219篇
  1982年   161篇
  1981年   124篇
  1980年   115篇
  1979年   66篇
  1978年   56篇
  1977年   62篇
  1976年   56篇
  1975年   56篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
Polybenzoxazine (PBZZ) thin films can be fabricated by the plasma‐polymerization technique with, as the energy source, plasmas of argon, oxygen, or hydrogen atoms and ions. When benzoxazine (BZZ) films are polymerized through the use of high‐energy argon atoms, electronegative oxygen atoms, or excited hydrogen atoms, the PBZZ films that form possess different properties and morphologies in their surfaces. High‐energy argon atoms provide a thermodynamic factor to initiate the ring‐opening polymerization of BZZ and result in the polymer surface having a grid‐like structure. The ring‐opening polymerization of the BZZ film that is initiated by cationic species such as oxygen atoms in plasma, is propagated around nodule structures to form the PBZZ. The excited hydrogen atom plasma initiates both polymerization and decomposition reactions simultaneously in the BZZ film and results in the formation of a porous structure on the PBZZ surface. We evaluated the surface energies of the PBZZ films polymerized by the action of these three plasmas by measuring the contact angles of diiodomethane and water droplets. The surface roughness of the films range from 0.5 to 26 nm, depending on the type of carrier gas and the plasma‐polymerization time. By estimating changes in thickness, we found that the PBZZ film synthesized by the oxygen plasma‐polymerization process undergoes the slowest rate of etching in CF4 plasma. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4063–4074, 2004  相似文献   
92.
Two benzoyl substituted chitosan derivatives, 3,6‐O‐dibenzoylchitosan (DBC) and 2‐N‐3,6‐O‐tribenzoylchitosan (TBC), were prepared, and their optical activities in organic solvent were investigated by circular dichroism (CD). For TBC, two splitting bands (a negative one at 288 nm and a positive one at 274 nm) corresponding to the 1Lb transition of the benzoyl group were observed in chloroform and dichloromethane, while only a negative CD band was recorded in N, N‐dimethylformamide (DMF). These results indicated that the transition moments of benzoyl groups were orderly arranged along the helical polymer chain when TBC was dissolved in a solvent with low polarity, but the same ordered structure did not appear in a polar solvent of DMF. For DBC, only negative CD signals corresponding to the 1Lb transition of the benzoyl group were observed, regardless of the solvent property, which indicated that the chromophores were not arranged in an ordered fashion with appropriate geometry to interact with one another to induce bi‐signate CD signals. Adding methanol or DMF to the solution of TBC/chloroform resulted in a progressive decrease of the intensity of the positive split band at 274 nm. The intensity of the positive band was weakened upon heating a solution of TBC/chloroform from 20 to 60 °C. The results suggested that the ordered arrangement of the chromophores in the TBC system was dependent on solvent and sensitive to temperature. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4107–4115, 2004  相似文献   
93.
The effects of the size (pseudo‐generation number) and nature of end groups on physical and rheological properties were investigated for a series of hyperbranched polyesters based on an ethoxylated pentaerythritol core and 2,2‐bis‐(hydroxymethyl)propionic acid repeat units. The observed linear dependence of the melt viscosity on the molar mass in the high pseudo‐generation‐number limit indicated that entanglement effects were substantially absent. Moreover, the marked influence of end capping of the end groups on the physical and rheological properties suggested that intermolecular interactions were dominated by contacts between the outer shells of the molecules, in which the end groups were assumed to be concentrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1218–1225, 2004  相似文献   
94.
A series of metallodendrimers, assembled by means of bis(terpyridinyl)Ru(II) connectivity on poly(propylene imine) dendrimer scaffolds, with homogeneous or heterogeneous surfaces, were prepared. Differential scanning calorimetry and thermogravimetric analysis were used to determine their thermal behavior, glass‐transition temperatures, and the decomposition kinetics and temperatures; no synergy effects for these properties were observed for the heterogeneously surfaced constructs in contrast to the corresponding homogeneously coated materials, which exhibited different values depending on their surface functionalities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1487–1495, 2004  相似文献   
95.
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004  相似文献   
96.
The tetramethoxysilane (TMOS)/2‐hydroxylethyl methacrylate (HEMA) hybrid gels were synthesized with acid and base catalysts, via the in situ polymerization of HEMA, with and without the cosolvent methanol. With methanol in the TMOS/HEMA sol, the enhanced esterification and depolymerization reactions of the silanols resulted in a slower growth of silica particles. The silica particles that were synthesized with an acid catalyst were less than 40 nm. The thermal resistance of the poly(2‐hydroxyethyl methacrylate) (PHEMA) chains was enhanced by the addition of colloidal silica. The Fourier transform infrared characterizations and the exothermal peaks on the differential scanning calorimetry traces of these hybrid gels indicated chemical hybridization occurring as a result of condensation of the colloid silica and PHEMA at higher temperatures. Hence, the residual weight content of the hybrid gel after its synthesis with the base catalyst was even higher than the content of TMOS in the hybrid sol. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3476–3486, 2004  相似文献   
97.
Hydrogels containing benzo-18-crown-6 were used to modify microcantilevers for measurements of the concentration of Pb2+ in aqueous solutions. These microcantilevers undergo bending deflection upon exposure to solutions containing various Pb2+ concentrations as the result of a swelling of the hydrogels. It was found that a concentration of 10(-6) M Pb2+ can be detected using this technology. Other cations, such as Na+, have no effect on the deflection of this cantilever. The cation K+, which also complexes with benzo-18-crown-6, could interfere with Pb2+ detection, but only at high concentrations (> 10(-4) M).  相似文献   
98.
Stable aminoxyls and an iminoxyl were observed by spin trapping and EPR techniques during the nitration of coumarins containing a hydroxy group by nitric oxide. The trapped free radicals are deduced to be the resonance stabilized phenoxy-like radicals. The mechanisms for the nitrations are suggested.  相似文献   
99.
A PM3 calculation in vacuum of the inclusion complexation ofo-, m-, p-nitro-phenol with calix[n]arenes is performedsuccessfully. The pathways for inclusion process are describedand the most probable structures of the 1:1 complex are soughtthrough a potential energy scan. The energy differences betweenthe inclusion complexes and the hosts, by calculation, show thatthe most stable complexation is calix[4]-p-nitro phenol andcalix[6]-m-nitro phenol.  相似文献   
100.
To prevent cyanobacterial bloom in eutrophic water by ultrasonic method, ultrasonic irradiations with different parameters were tested to inhibit Spirulina platensis from growth. The experimental result based on cyanobacterial growth, chlorophyll a and photosynthetic activity showed that, the ultrasonic irradiation inhibited cyanobacterial proliferation effectively, furthermore the inhibition effectiveness increased in the order: 200 kHz>1.7 MHz>20 kHz and became saturated with the increased power. The inhibition mechanism can be mainly attributed to the mechanical damage to the cell structures caused by ultrasonic cavitation, which was confirmed by light microscopy and differential interference microscopy. The optimal frequency of 200 kHz in cavition and sonochemistry was also most effective in cyanobacterial growth inhibition. The higher frequency of 1.7 MHz is weaker than 20 kHz in cavitation, but has more effective inhibition because it is nearer to the resonance frequency of gas vesicle. The inhibition saturation with ultrasonic power was due to the ultrasonic attenuation induced by the acoustic shielding of bubbles enclosing the radiate surface of transducer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号