首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78728篇
  免费   15034篇
  国内免费   7929篇
化学   70476篇
晶体学   917篇
力学   3037篇
综合类   643篇
数学   6974篇
物理学   19644篇
  2024年   140篇
  2023年   859篇
  2022年   1488篇
  2021年   1709篇
  2020年   2883篇
  2019年   4034篇
  2018年   2398篇
  2017年   2039篇
  2016年   5252篇
  2015年   5406篇
  2014年   5699篇
  2013年   7020篇
  2012年   6659篇
  2011年   6018篇
  2010年   5484篇
  2009年   5432篇
  2008年   5271篇
  2007年   4431篇
  2006年   4000篇
  2005年   3734篇
  2004年   3134篇
  2003年   2747篇
  2002年   3516篇
  2001年   2564篇
  2000年   2390篇
  1999年   1417篇
  1998年   848篇
  1997年   721篇
  1996年   725篇
  1995年   608篇
  1994年   553篇
  1993年   503篇
  1992年   379篇
  1991年   324篇
  1990年   302篇
  1989年   217篇
  1988年   164篇
  1987年   126篇
  1986年   129篇
  1985年   98篇
  1984年   52篇
  1983年   60篇
  1982年   45篇
  1981年   35篇
  1980年   15篇
  1979年   17篇
  1978年   6篇
  1974年   5篇
  1973年   5篇
  1957年   9篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
71.
The gas‐transport properties of poly[2,6‐toluene‐2,2‐bis(3,4‐dicarboxylphenyl)hexafluoropropane diimide] (6FDA‐2,6‐DAT) have been investigated. The sorption behavior of dense 6FDA‐2,6‐DAT membranes is well described by the dual‐mode sorption model and has certain relationships with the critical temperatures of the penetrants. The solubility coefficient decreases with an increase in either the pressure or temperature. The temperature dependence of the diffusivity coefficient increases with an increase in the penetrant size, as the order of the activation energy for the diffusion jump is CH4 > N2 > O2 > CO2. Also, the average diffusion coefficient increases with increasing pressure for all the gases tested. As a combined contribution from sorption and diffusion, permeability decreases with increases in the pressure and the kinetic diameter of the penetrant molecules. Even up to 32.7 atm, no plasticization phenomenon can be observed on flat dense 6FDA‐2,6‐DAT membranes from their permeability–pressure curves. However, just as for other gases, the absolute value of the heat of sorption of CO2 decreases with increasing pressure at a low‐pressure range, but the trend changes when the feed pressure is greater than 10 atm. This implies that CO2‐induced plasticization may occur and reduce the positive enthalpy required to create a site into which a penetrant can be sorbed. Therefore, a better diagnosis of the inherent threshold pressure for the plasticization of a glassy polymer membrane may involve examining the absolute value of the heat of sorption as a function of pressure and identifying the turning point at which the gradient of the absolute value of the heat of sorption against pressure turns from a negative value to a positive one. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 354–364, 2004  相似文献   
72.
For properly chosen elastomer compounds, thermorheological characterization is combined with an examination of the variation of the wet sliding friction with temperature. A conceptual argument leads to the assumption that the wet sliding friction should maximize at the energy dissipation peak associated with the dynamic softening transition at a characteristic frequency determined by the sliding speed and the effective smallest surface asperity scale. The dynamic softening transition is characterized with the peak in tan δ/Gn, where tan δ is the loss tangent, G′ is the elastic modulus, and n is a constant between 0 and 1. The William–Landel–Ferry transform is uncritically applied for extrapolating the position of the peak in tan δ/Gn at high frequencies. Even based on the criterion of tan δ, the results obtained on a concrete surface indicate that the effective smallest asperity scale is of order of 100 μm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2467–2478, 2004  相似文献   
73.
The influence of irradiation and grafting on the crystallinity of three base polymers has been investigated with differential scanning calorimetry. Grafting has the largest effect on the base polymer crystallinity and results in a reduction of the crystallinity. The thermal degradation of the base polymers and grafted films has been investigated with thermogravimetric analysis. The extent of the fluorination of the base polymer, the irradiation method, and the graft level all influence the thermal degradation and its activation energy. It is proposed that the variation of the chain lengths of the grafted polystyrene chains is actually a primary underlying factor responsible for the influence of these various parameters on the degradation process. The first results of a comparative thermal analysis of some fuel‐cell membranes are also presented, and the promise and shortcomings of this method are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2612–2624, 2004  相似文献   
74.
Microcapsulation is a technology that enwrapped the solid or liquid or some gas matter with membrane materials to form microparticles(i.e.microcapsules). The materials of microcapsule is composed of naturnal polymers or modified naturnal polymers or synthesized polymers. The water-soluble core matter can only use oil-soluble wall materials, and vice versa.Synthesized methods of polymer microcapsulesSynthesized methods with monomers as raw materialsThis kind of methods include suspension polymerization, emulsion polymerization, dispersal polymerization, precipitation polymerization,suspension condensation polymerization, dispersal condensation polymerization, deposition condensation polymerization, interface condensation polymerization, and so on.Synthesized methods with polymers as raw materialsThese methods are suspension cross-linked polymerization, coacervation phase separation,extraction with solvent evaporation, polymer deposition, polymer chelation, polymer gel,solidification of melting polymer, tray-painted ways, fluidized bed ways, and so forth.Polymer materials to synthesize microcapsules2.1. Naturnal polymer materialsThe characteristics of this kind of materials are easy to form membrane, good stability and no toxicity. The polymer materials include lipids(liposome), amyloses, proteins, plant gels, waxes, etc.2.2. Modified polymer materialsThe characteristics of these materials are little toxicity, high viscidity(viscosity), soluble salt materials. But they cannot be used in water, acidic environment and high temperature environment for a long time. The materials include all kind of derivants of celluloses.2.3. Synthesized polymer materialsThe characteristics of the materials are easy to form membrane, good stability and adjustment of membrane properties. The synthesized polymer materials include degradable polymers(PLA, PGA,PLGA, PCL, PHB, PHV, PHA, PEG, PPG and the like) and indegradable polymers(PA, PMMA,PAM, PS, PVC, PB, PE, PU, PUA, PVA and otherwise).The applications of polymer microcapsules in cell technologyThe "artificial cell" is the biological active microcapsule used in biological and medical fields.The applications of cells (including transgenic cells, the same as artificial cells) technology include several aspects as follows:3.1. Microcapsulation of artificial red cell3.2. Microcapsule of artificial cell of biological enzyme3.3. Microcapsule of artificial cell of magnetic material3.4. Microcapsule of artificial cell of active carbon3.5. Microcapsule of active biological cell  相似文献   
75.
A New Triterpene from the Orchid Pholidota yunnanensis   总被引:2,自引:0,他引:2  
A new triterpene, 25-methylenecyclopholidonyl p-hydroxy-trans-cinnamate, was isolated from a orchid Pholidota yunnanensis. The structure elucidation and ^1H, ^13C-NMR assignments were achieved by spectral and chemical method.  相似文献   
76.
Metabolites of A Novel Antibiotic Bitespiramycin in Rat Urine and Bile   总被引:3,自引:0,他引:3  
A sensitive analytical method to identify active metabolites of bitespiramycin in rat urine and bile was developed by liquid chromatography-electrospray ionization tandem mass spectrometry(LC/ESI-MS^n).Bitespiramycin and its major active metabolites in rat urine and bile were isolated and identified as M1 serial(spiramycin Ⅰ,Ⅱ,Ⅲ),M2 serial(platenomycin A1,josamycin and leucomycin A1) and M3 serial(deisovalerylplatenomycin A1,deisovaleryljosamycin,deisovalerylleucomycin A1).  相似文献   
77.
Baker‘s yeast mediated reduction of optically active diketone is described. The two keto groups are efficiently differentiated and the ee value of the recovered material is considerably raised. It affords highly optically active key intermediates efficiently for the synthesis of natural polyhydroxylated agarofuran products.  相似文献   
78.
The relation of the isoelectric point (IEP) and the point of zero net charge (PZNC) of the hydrotalcite-like compounds was discussed. It was found that the IEP does not equal to the PZNC and the IEP is higher than the PZNC. The structural positive charges existing in the HTlc,which cause the difference between the IEP and the PZNC. The effects of the structural positive charges of the HTlc on its IEP and PZNC are the same as the specific adsorption of metal cations.  相似文献   
79.
The crystal structures of two potential tumor imaging agents and therapeutic agents -copper(Ⅱ) complexes with salicylidene-tyrosinato Schiff base and nitrogen-donor chelating Lewis base, [Cu(sal-tyr)(bipy)] 1 and [Cu(sal-tyr)(phen)]2CH3OH 2 are presented. Our work is helpful to get deep understanding of novel 64Cu tumor imaging agents and therapeutic agents.  相似文献   
80.
In this paper, a model of a linear multilevel programming problem with dominated objective functions (LMPPD(l)) is proposed, where multiple reactions of the lower levels do not lead to any uncertainty in the upper-level decision making. Under the assumption that the constrained set is nonempty and bounded, a necessary optimality condition is obtained. Two types of geometric properties of the solution sets are studied. It is demonstrated that the feasible set of LMPPD(l) is neither necessarily composed of faces of the constrained set nor necessarily connected. These properties are different from the existing theoretical results for linear multilevel programming problems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号