首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1167篇
  免费   95篇
  国内免费   41篇
化学   905篇
晶体学   10篇
力学   32篇
综合类   1篇
数学   129篇
物理学   226篇
  2023年   10篇
  2022年   19篇
  2021年   18篇
  2020年   23篇
  2019年   29篇
  2018年   25篇
  2017年   16篇
  2016年   45篇
  2015年   54篇
  2014年   43篇
  2013年   82篇
  2012年   82篇
  2011年   87篇
  2010年   71篇
  2009年   49篇
  2008年   89篇
  2007年   68篇
  2006年   63篇
  2005年   61篇
  2004年   41篇
  2003年   29篇
  2002年   36篇
  2001年   16篇
  2000年   25篇
  1999年   14篇
  1998年   14篇
  1997年   15篇
  1996年   16篇
  1995年   13篇
  1994年   12篇
  1993年   10篇
  1992年   13篇
  1991年   13篇
  1990年   7篇
  1989年   4篇
  1988年   10篇
  1985年   5篇
  1983年   5篇
  1982年   6篇
  1981年   6篇
  1980年   6篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   7篇
  1974年   4篇
  1973年   4篇
  1967年   4篇
  1964年   2篇
  1934年   2篇
排序方式: 共有1303条查询结果,搜索用时 359 毫秒
51.
52.
The vitamin C concentrations in three food-matrix Standard Reference Materials (SRMs) from the National Institute of Standards and Technology (NIST) have been determined by liquid chromatography (LC) with absorbance detection. These materials (SRM 1549a Whole Milk Powder, SRM 1849a Infant/Adult Nutritional Formula, and SRM 3233 Fortified Breakfast Cereal) have been characterized to support analytical measurements made by food processors that are required to provide information about their products’ vitamin C content on the labels of products distributed in the United States. The SRMs are primarily intended for use in validating analytical methods for the determination of selected vitamins, elements, fatty acids, and other nutrients in these materials and in similar matrixes. They can also be used for quality assurance in the characterization of test samples or in-house control materials, and for establishing measurement traceability. Within-day precision of the LC method used to measure vitamin C in the food-matrix SRMs characterized in this study ranged from 2.7 % to 6.5 %.  相似文献   
53.
The reactions of E powder (E=S, Se) with a mixture of Cr(CO)6 and Mn2(CO)10 in concentrated solutions of KOH/MeOH produced two new mixed Cr? Mn? carbonyl clusters, [E2CrMn2(CO)9]2? (E=S, 1 ; Se, 2 ). Clusters 1 and 2 were isostructural with one another and each displayed a trigonal‐bipyramidal structure, with the CrMn2 triangle axially capped by two μ3‐E atoms. The analogous telluride cluster, [Te2CrMn2(CO)9]2? ( 3 ), was obtained from the ring‐closure of Te2Mn2 ring complex [Te2Mn2Cr2(CO)18]2? ( 4 ). Upon bubbling with CO, clusters 2 and 3 were readily converted into square‐pyramidal clusters, [E2CrMn2(CO)10]2? (E=Se, 5 ; Te, 6 ), accompanied with the cleavage of one Cr? Mn bond. According to SQUID analysis, cluster 6 was paramagnetic, with S=1 at room temperature; however, the Se analogue ( 5 ) was spectroscopically proposed to be diamagnetic, as verified by TD‐DFT calculations. Cluster 6 could be further carbonylated, with cleavage of the Mn? Mn bond to produce a new arachno‐cluster, [Te2CrMn2(CO)11]2? ( 7 ). The formation and structural isomers, as well as electrochemistry and UV/Vis absorption, of these clusters were also elucidated by DFT calculations.  相似文献   
54.
A reproducible, large scale and practical synthesis of N-(benzyloxycarbonyl)-L-vinylglycine methyl ester starting from L-methionine methyl ester hydrochloride is described.  相似文献   
55.
A new cyano-substituted diarylethene derivative (R-NH2) with reversible far-red mechanofluorochromic property was synthesized and confirmed by standard spectroscopic methods. To the best of our knowledge, the 684 nm red-shifted wavelength of the ground R-NH2 is the longest wavelength that has appeared in the literature. The mechanofluorochromic mechanism was investigated by small and wide-angle X-ray scattering and was ascribed to the destruction of crystalline structure. More in-depth study by infrared spectra and time-resolved emission-decay behaviors showed that the changes of C–H out-of-plane bending vibrations in aryl group of the compound and the obvious increase of fluorescence lifetime might be the fundamental reasons. The synthetic strategy reported here can be extended to prepare more and more long-wavelength emission mechanofluorochromic materials, which can broaden the scope of application of such materials and for thoroughly understanding the mechanofluorochromic mechanism.  相似文献   
56.
Three unconventional dendrimers that contained rigid NH? triazine linkages and peripheral tert‐butyl moieties were prepared by using a convergent approach and characterized by 1H and 13C NMR spectroscopy, mass spectrometry, and elemental analysis. Based on a thermogravimetric analysis study, these dendrimers were observed to display thermal stability at about 300 °C. The NH? triazine moiety, which possessed protonated and proton‐free nitrogen sites (like the imidazole unit), displayed the capture of polarizable CO2 molecules through hydrogen‐bond and/or dipole–quadrupole interactions. In addition, the adsorption of various amounts of CO2 and N2 at different pressures suggests that the dendritic pores, which arise from the stacking of the middle co‐planar and rim protuberant dendrimers, G n ‐N~N‐G n (n=1–3), either swell or shrink at high pressure, thus indicating that these dendrimers may have a breathing ability.  相似文献   
57.
58.
59.
Extracts from Hericium erinaceus can cause neural cells to produce nerve growth factor (NGF) and protect against neuron death. The objective of this study was to evaluate the effects of ethanol and hot water extracts from H. erinaceus solid-state fermented wheat product on the brain cells of zebrafish embryos in both pre-dosing protection mode and post-dosing repair mode. The results showed that 1% ethanol could effectively promote zebrafish embryo brain cell death. Both 200 ppm of ethanol and water extracts from H. erinaceus solid-state fermented wheat product protected brain cells and significantly reduced the death of brain cells caused by 1% ethanol treatment in zebrafish. Moreover, the zebrafish embryos were immersed in 1% ethanol for 4 h to cause brain cell damage and were then transferred and soaked in the 200 ppm of ethanol and water extracts from H. erinaceus solid-state fermented wheat product to restore the brain cells damaged by the 1% ethanol. However, the 200 ppm extracts from the unfermented wheat medium had no protective and repairing effects. Moreover, 200 ppm of ethanol and water extracts from H. erinaceus fruiting body had less significant protective and restorative effects on the brain cells of zebrafish embryos. Both the ethanol and hot water extracts from H. erinaceus solid-state fermented wheat product could protect and repair the brain cells of zebrafish embryos damaged by 1% ethanol. Therefore, it has great potential as a raw material for neuroprotective health product.  相似文献   
60.
In this work, we aim to observe and study the physics of bacteria and cancer cells pearl chain formation under dielectrophoresis (DEP). Experimentally, we visualized the formation of Bacillus subtilis bacterial pearl chain and human breast cancer cell (MCF-7) chain under positive and negative dielectrophoretic force, respectively. Through a simple simulation with creeping flow, AC/DC electric fields, and particle tracing modules in COMSOL, we examined the mechanism by which bacteria self-organize into a pearl chain across the gap between two electrodes via DEP. Our simulation results reveal that the region of greatest positive DEP force shifts from the electrode edge to the leading edge of the pearl chain, thus guiding the trajectories of free-flowing particles toward the leading edge via positive DEP. Our findings additionally highlight the mechanism why the free-flowing particles are more likely to join the existing pearl chain rather than starting a new pearl chain. This phenomenon is primarily due to the increase in magnitude of electric field gradient, and hence DEP force exerted, with the shortening gap between the pearl chain leading edge and the adjacent electrode. The findings shed light on the observed behavior of preferential pearl chain formation across electrode gaps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号