首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   904篇
  免费   53篇
  国内免费   7篇
化学   686篇
晶体学   6篇
力学   32篇
数学   60篇
物理学   180篇
  2022年   15篇
  2021年   29篇
  2020年   14篇
  2019年   10篇
  2018年   16篇
  2017年   10篇
  2016年   24篇
  2015年   19篇
  2014年   28篇
  2013年   54篇
  2012年   55篇
  2011年   75篇
  2010年   45篇
  2009年   34篇
  2008年   59篇
  2007年   60篇
  2006年   54篇
  2005年   43篇
  2004年   36篇
  2003年   26篇
  2002年   44篇
  2001年   15篇
  2000年   19篇
  1999年   8篇
  1998年   6篇
  1997年   4篇
  1996年   5篇
  1995年   13篇
  1994年   12篇
  1993年   15篇
  1992年   10篇
  1991年   5篇
  1990年   8篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1985年   8篇
  1984年   3篇
  1983年   3篇
  1982年   6篇
  1980年   8篇
  1979年   4篇
  1978年   11篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1974年   7篇
  1973年   3篇
  1972年   2篇
  1970年   3篇
排序方式: 共有964条查询结果,搜索用时 15 毫秒
921.
ZnSb nanotubes were grown through a template free electrodeposition method under over-potential conditions. The growth of the nanotubes was attributed to the template effect from H(2) bubbles. Due to their hollow structure, the ZnSb nanotubes depicted better Li ion storage performance compared to that of ZnSb nanoparticles deposited under different conditions.  相似文献   
922.
Brine provides remarkable rate acceleration and a higher level of stereoselectivity over organic solvents, due to the hydrophobic hydration effect, in the enantioselective Michael addition reactions of 1,3-dicarbonyls to β-nitroolefins using chiral H-donors as organocatalysts.  相似文献   
923.
Park SR  Kim CH  Yu J  Han JH  Kim C 《Physical review letters》2011,107(15):156803
We propose that the existence of local orbital angular momentum (OAM) on the surfaces of high-Z materials plays a crucial role in the formation of Rashba-type surface band splitting. Local OAM state in a Bloch wave function produces an asymmetric charge distribution (electric dipole). The surface-normal electric field then aligns the electric dipole and results in chiral OAM states and the relevant Rashba-type splitting. Therefore, the band splitting originates from electric dipole interaction, not from the relativistic Zeeman splitting as proposed in the original Rashba picture. The characteristic spin chiral structure of Rashba states is formed through the spin-orbit coupling and thus is a secondary effect to the chiral OAM. Results from first-principles calculations on a single Bi layer under an external electric field verify the key predictions of the new model.  相似文献   
924.
Splats are obtained on the substrates inclined at different angles (0°, 20°, 40° and 60°) by plasma spraying process and characterized by SEM and WYKO® optical surface profiler. Numerical model is developed using CFD software FLOW-3D® to simulate the process of droplet impact, spreading and solidification onto the substrates. Splat characteristics such as spread factor, aspect ratio and fractional factor are defined and compared between simulation and experiment. Fair agreements are obtained. In addition, the impacting behavior including spreading and solidification are analyzed in details from the simulation results. The rates of reduction in droplet kinetic energy during impact, spreading and solidification are also compared between different inclination angles.  相似文献   
925.
Supramolecular side chain liquid crystalline polymers were prepared from poly(3-carboxypropylmethylsiloxane) (PSI100) and azobenzene derivatives through intermolecular hydrogen bonding (H-bonding) between the carboxylic acid groups in the PSI100 and the imidazole rings in the azobenzene derivatives. The existence of H-bonding has been confirmed using FTIR spectroscopy. The polymeric complexes behave as liquid crystalline (LC) polymers and exhibit stable mesophases. The LC behaviour of these H-bonded polymeric complexes was investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction. The complexes exhibit nematic LC phases identified on the basis of Schlieren optical textures. On increasing spacer length or the concentration of the H-bonded mesogenic unit in the complex, the clearing temperature and the temperature range of the LC phase of the polymeric complex increase. The terminal group plays a critical role in determining the LC properties of the polymeric complexes. A terminal methoxy group is more efficient than a nitro group in increasing the clearing temperature. The electron donor-acceptor interactions between the H-bonded mesogenic units containing methoxy and nitro terminal groups in supramolecular 'copolymeric' complexes lead to an increase in the clearing temperature and a wider temperature range for the LC phase.  相似文献   
926.
A series of triarylamine‐containing tricarbonyl rhenium(I) complexes, [BrRe(CO)3(N^N)] (N^N=5,5′‐bis(N,N‐diaryl‐4‐[ethen‐1‐yl]‐aniline)‐2,2′‐bipyridine), has been designed and synthesized by introducing a rhenium(I) metal center into a donor‐π‐acceptor‐π‐donor structure. All of the complexes showed an intense broad structureless emission band in dichloromethane at around 680–708 nm, which originated from an excited state of intraligand charge transfer (3ILCT) character from the triarylamine to the bipyridine moiety. Upon introduction of the bulky and electron‐donating pentaphenylbenzene units attached to the aniline groups, the emission bands were found to be red shifted. The nanosecond transient absorption spectra of two selected complexes were studied, which were suggestive of the formation of an initial charge‐separated state. Computational studies have been performed to provide further insight into the origin of the absorption and emission. One of the rhenium(I) complexes has been utilized in the fabrication of organic light‐emitting diodes (OLEDs), representing the first example of the realization of deep red to near‐infrared rhenium(I)‐based OLEDs with an emission extending up to 800 nm.  相似文献   
927.
Colorectal cancer (CRC) is one of the most common cancers worldwide. Gut microbiota are highly associated with CRC, and Fusobacterium nucleatum was found to be enriched in CRC lesions and correlated with CRC carcinogenesis and metastases. Paris polyphylla is a well-known herbal medicine that showed anticancer activity. The present study demonstrates that P. polyphylla inhibited the growth of CRC cells. In addition, treating with active compounds pennogenin 3-O-beta-chacotrioside and polyphyllin VI isolated from P. polyphylla inhibited the growth of F. nucleatum. We also found that extracellular vesicles (EVs) released from F. nucleatum could promote mitochondrial fusion and cell invasion in CRC cells, whereas active components from P. polyphylla could dampen such an impact. The data suggest that P. polyphylla and its active ingredients could be further explored as potential candidates for developing complementary chemotherapy for the treatment of CRC.  相似文献   
928.
A novel isoquinoline‐containing C^N^C ligand and its phosphorescent triphenylamine‐based alkynylgold(III) dendrimers have been synthesized. These alkynylgold(III) dendrimers serve as phosphorescent dopants in the fabrication of efficient solution‐processable organic light‐emitting devices (OLEDs). The photophysical, electrochemical, and electroluminescence properties were studied. A saturated red emission with CIE coordinates of (0.64, 0.36) and a high EQE value of 3.62 % were achieved. Unlike other red‐light‐emitting iridium(III) dendrimers, a low turn‐on voltage of less than 3 V and a reduced efficiency roll‐off at high current densities were observed; this can be accounted for by the enhanced carrier transporting ability and the relatively short lifetimes in the high‐generation dendrimers. This class of alkynylgold(III) dendrimers are promising candidates as phosphorescent dopants in the fabrication of solution‐processable OLEDs.  相似文献   
929.
The two‐electron reduction of a Group 14‐element(I) complex [RË?] (E=Ge, R=supporting ligand) to form a novel low‐valent dianion radical with the composition [RË:]. 2? is reported. The reaction of [LGeCl] ( 1 , L=2,6‐(CH?NAr)2C6H3, Ar=2,6‐iPr2C6H3) with excess calcium in THF at room temperature afforded the germylidenediide dianion radical complex [LGe]. 2??Ca(THF)32+ ( 2 ). The reaction proceeds through the formation of the germanium(I) radical [LGe?], which then undergoes a two‐electron reduction with calcium to form 2 . EPR spectroscopy, X‐ray crystallography, and theoretical studies show that the germanium center in 2 has two lone pairs of electrons and the radical is delocalized over the germanium‐containing heterocycle. In contrast, the magnesium derivative of the germylidendiide dianion radical is unstable and undergoes dimerization with concurrent dearomatization to form the germylidenide anion complex [C6H3‐2‐{C(H)?NAr}Ge‐Mg‐6‐{C(H)‐NAr}]2 ( 3 ).  相似文献   
930.
We present here results of a series of density functional theory (DFT) studies on enzyme active site models of nitric oxide synthase (NOS) and address the key steps in the catalytic cycle whereby the substrate (L-arginine) is hydroxylated to N(omega)-hydroxo-arginine. It has been proposed that the mechanism follows a cytochrome P450-type catalytic cycle; however, our calculations find an alternative low energy pathway whereby the bound L-arginine substrate has two important functions in the catalytic cycle, namely first as a proton donor and later as the substrate in the reaction mechanism. Thus, the DFT studies show that the oxo-iron active species (compound I) cannot abstract a proton and neither a hydrogen atom from protonated L-arginine due to the strength of the N-H bonds of the substrate. However, the hydroxylation of neutral arginine by compound I and its one electron reduced form (compound II) requires much lower barriers and is highly exothermic. Detailed analysis of proton transfer mechanisms shows that the basicity of the dioxo dianion and the hydroperoxo-iron (compound 0) intermediates in the catalytic cycle are larger than that of arginine, which makes it likely that protonated arginine donates one of the two protons needed during the first catalytic cycle of NOS. Therefore, DFT predicts that in NOS enzymes arginine binds to the active site in its protonated form, but is deprotonated during the oxygen activation process in the catalytic cycle by either the dioxo dianion species or compound 0. As a result of the low ionization potential of neutral arginine, the actual hydroxylation reaction starts with an initial electron transfer from the substrate to compound I to create compound II followed by a concerted hydrogen abstraction/radical rebound from the substrate. These studies indicate that compound II is the actual oxidant in NOS enzymes that performs the hydroxylation reaction of arginine, which is in sharp contrast with the cytochromes P450 where compound II was shown to be a sluggish oxidant. This is the first example of an enzyme where compound II is able to participate in the reaction mechanism. Moreover, arginine hydroxylation by NOS enzymes is catalyzed in a significantly different way from the cytochromes P450 although the active sites of the two enzyme classes are very similar in structure. Detailed studies of environmental effects on the reaction mechanism show that environmental perturbations as appear in the protein have little effect and do not change the energies of the reaction. Finally, a valence bond curve crossing model has been set up to explain the obtained reaction mechanisms for the hydrogen abstraction processes in P450 and NOS enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号