首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   3篇
化学   72篇
力学   7篇
数学   5篇
物理学   22篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   7篇
  2015年   6篇
  2014年   2篇
  2013年   5篇
  2012年   8篇
  2011年   8篇
  2010年   8篇
  2009年   3篇
  2008年   8篇
  2007年   9篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1983年   1篇
  1981年   1篇
  1978年   2篇
  1975年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
61.
The tedanolides are biologically active polyketides that exhibit a macrolactone constructed from a primary alcohol. Since polyketidal transformations only generate secondary alcohols, it has been hypothesized by Taylor that this unique lactone could arise from a postketidal transesterification. In order to probe this hypothesis and to investigate the biological profile of the putative precursor of all members of the tedanolide family, we embarked on the synthesis of desepoxyisotedanolide and its biological evaluation in comparison to desepoxytedanolide. The biological experiments unraveled a second target for desepoxytedanolide and provided evidence that the proposed transesterification indeed provides a survival advantage for the producing microorganism.  相似文献   
62.
The kinetics of phase separation of aqueous solutions of sodium-poly(styrene sulfonate) (NaPSS) containing barium chloride (BaCl(2)) is studied by static and dynamic light scattering. We report a novel mechanism of phase separation, where an enrichment of polymer aggregates of well-defined size occurs in the very early stage of nucleation, which is then followed by a growth process in the formation of the new phase. In the latter stage, the polymer aggregates formed in the early stage act as the templating nuclei. Even in the homogeneous phase at higher temperatures above the upper critical phase boundary, polymer aggregates are present in agreement with previously reported results. Upon rapidly cooling the system below the phase boundary, the number concentration of the aggregates increases first by maintaining their size to be relatively monodisperse, before the growth process takes over at later times. The size and fractal dimension of aggregates in the homogeneous phase and the early nucleation stage of phase separation and the dependence of nucleation time and growth rate on quench depth and salt concentration are determined. The hydrodynamic radius (R(H)) of the unaggregated chains is of the order of 1-10 nm depending on the molecular weight of NaPSS, while R(H) of aggregates is of the order of 100 nm independent of the molecular weight of NaPSS. Unaggregated chains follow good solution behavior with a fractal dimension of 5/3 while the fractal dimension of aggregates is larger than 3.5 suggesting the branched nature of aggregates. Nucleation time is sensitive to quench depth and salt concentration. Increasing a quench depth or increasing BaCl(2) concentration shortens the nucleation time. After the nucleation time, during the growth period, the size of aggregates grows linearly with time, with growth rate being higher for deeper quench depths and higher BaCl(2) concentrations. The mechanism of phase separation of aqueous solutions of NaPSS and BaCl(2) is seen to proceed by utilizing the already-existing aggregates to nucleate the new phase, in marked contrast to hitherto known results on phase separation in uncharged polymer systems.  相似文献   
63.
The authors have addressed theoretically the hydrodynamic effect on the translocation of DNA through nanopores. They consider the cases of nanopore surface charge being opposite to the charge of the translocating polymer. The authors show that, because of the high electric field across the nanopore in DNA translocation experiments, electro-osmotic flow is able to create an absorbing region comparable to the size of the polymer around the nanopore. Within this capturing region, the velocity gradient of the fluid flow is high enough for the polymer to undergo coil-stretch transition. The stretched conformation reduces the entropic barrier of translocation. The diffusion limited translocation rate is found to be proportional to the applied voltage. In the authors' theory, many experimental variables (electric field, surface potential, pore radius, dielectric constant, temperature, and salt concentration) appear through a single universal parameter. They have made quantitative predictions on the size of the adsorption region near the pore for the polymer and on the rate of translocation.  相似文献   
64.
65.
We present a theory of coupled fluctuations of polymer segments, counterions, and coions in semidilute polyelectrolyte solutions containing added salt. The coupling among the three species results in three relaxation modes, instead of the previous common usage of only two relaxation modes by absorbing the role of salt as an effective solvent. Among the three modes, one is the nondiffusive plasmon mode and the other two are diffusive modes. These three modes are unrelated to any other slow mode that may arise from effects such as aggregation. Explicit expressions are derived for the decay rates in terms of concentrations of polyelectrolyte and salt, and the degree of ionization of the polymer. The specific values for the decay rates of the three modes are shown as an illustration for a chosen set of values of experimental variables. In the absence of added salt, the present theory reduces to the previous theory of fast diffusion in salt‐free polyelectrolyte solutions and to the Nernst–Hartley theory for simple electrolytes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1263–1269  相似文献   
66.
We present a theory for polyelectrolyte gels that allow the effective charge of the polymer backbone to self-regulate. Using a variational approach, we obtain an expression for the free energy of gels that accounts for the gel elasticity, free energy of mixing, counterion adsorption, local dielectric constant, electrostatic interaction among polymer segments, electrolyte ion correlations, and self-consistent charge regularization on the polymer strands. This free energy is then minimized to predict the behavior of the system as characterized by the gel volume fraction as a function of external variables such as temperature and salt concentration. We present results for the volume transition of polyelectrolyte gels in salt-free solvents, solvents with monovalent salts, and solvents with divalent salts. The results of our theoretical analysis capture the essential features of existing experimental results and also provide predictions for further experimentation. Our analysis highlights the importance of the self-regularization of the effective charge for the volume transition of gels in particular, and for charged polymer systems in general. Our analysis also enables us to identify the dominant free energy contributions for charged polymer networks and provides a framework for further investigation of specific experimental systems.  相似文献   
67.
Starting from a coarse grained representation of the building units of the minute virus of mice and a flexible polyelectrolyte molecule, we have explored the mechanism of assembly into icosahedral structures with the help of Langevin dynamics simulations and the parallel tempering technique. Regular icosahedra with appropriate symmetry form only in a narrow range of temperature and polymer length. Within this region of parameters where successful assembly would proceed, we have systematically investigated the growth kinetics. The assembly of icosahedra is found to follow the classical nucleation and growth mechanism in the absence of the polymer, with the three regimes of nucleation, linear growth, and slowing down in the later stage. The calculated average nucleation time obeys the laws expected from the classical nucleation theory. The linear growth rate is found to obey the laws of secondary nucleation as in the case of lamellar growth in polymer crystallization. The same mechanism is seen in the simulations of the assembly of icosahedra in the presence of the polymer as well. The polymer reduces the nucleation barrier significantly by enhancing the local concentration of subunits via adsorbing them on their backbone. The details of growth in the presence of the polymer are also found to be consistent with the classical nucleation theory, despite the smallness of the assembled structures.  相似文献   
68.
We present results on the sequence dependence of translocation kinetics for a partially charged heteropolymer moving through a very thin pore using theoretical tools and Langevin dynamics simulational techniques. The chain is composed of two types of monomers of differing frictional interaction with the pore and charge. We present exact analytical expressions for passage probability, mean first passage time, and mean successful passage times for both reflecting/absorbing and absorbing/absorbing boundary conditions, showing rich and unexpected dependence of translocation behavior on charge fraction, distribution along the chain, and electric field configuration. We find excellent qualitative and good quantitative agreement between theoretical and simulation results. Surprisingly, there emerges a threshold charge fraction of a diblock copolymer beyond which the success rate of translocation is independent of charge fraction. Also, the mean successful translocation time of a diblock copolymer displays non-monotonic behavior with increasing length of the charged block; there is an optimum length of the charged block where the mean translocation rate is the slowest; and there can be a substantial range of higher charge fractions which make the translocation slower than even a minimally charged chain. Additionally, we find for a fixed total charge on the chain, finer distribution along the backbone significantly decreases mean translocation time.  相似文献   
69.
This study presents the production of biodiesel from algae oil by transesterification using thermophilic microorganism. The microorganism used in this study was isolated from the soil sample obtained near the furnace. The organism was identified as Bacillus sp., and the lipase obtained was purified by ammonium sulfate precipitation and ion exchange chromatography leading to 8.6-fold purification and 13% recovery. Molecular weight of the enzyme was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and it was found to be 45 kDa. The effect of pH, temperature, and solvent addition on lipase activity was investigated. The enzyme showed maximum activity at 55 °C and at pH 7 and was also found to be highly active in the presence of organic solvents such as hexane and t-butanol. The isolated lipase was successfully used for the production of biodiesel. The transesterification activity of the isolated lipase showed 76% of fatty acid methyl esters yield in 40 h, which indicated that this enzyme can be used as a potential biocatalyst for the biodiesel production.  相似文献   
70.
A series of new hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = chalcone thiosemicarbazone) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with chalcone thiosemicarbazones in benzene under reflux. The new complexes have been characterized by analytical and spectroscopic (IR, UV-vis, 1H, 31P and 13C NMR) methods. On the basis of data obtained, an octahedral structure was assigned for all of the complexes. The chalcone thiosemicarbazones behave as dianionic tridentate O, N, S donors and coordinate to ruthenium via the phenolic oxygen of chalcone, the imine nitrogen of thiosemicarbazone and thienol sulfur. The new complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols to their corresponding aldehydes and ketones and they were also found to be efficient catalysts for the transfer hydrogenation of carbonyl compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号