首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   558篇
  免费   26篇
  国内免费   3篇
化学   507篇
力学   9篇
数学   23篇
物理学   48篇
  2023年   2篇
  2022年   3篇
  2021年   8篇
  2020年   21篇
  2019年   13篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   15篇
  2014年   14篇
  2013年   19篇
  2012年   36篇
  2011年   42篇
  2010年   27篇
  2009年   16篇
  2008年   38篇
  2007年   31篇
  2006年   32篇
  2005年   31篇
  2004年   43篇
  2003年   31篇
  2002年   19篇
  2001年   13篇
  2000年   8篇
  1999年   12篇
  1998年   2篇
  1997年   5篇
  1996年   8篇
  1995年   2篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   8篇
  1986年   5篇
  1985年   3篇
  1984年   10篇
  1982年   6篇
  1981年   2篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
  1965年   1篇
  1964年   1篇
  1963年   2篇
  1913年   2篇
排序方式: 共有587条查询结果,搜索用时 15 毫秒
21.
Development of supramolecular methods to further activate a highly reactive intermediate is a fascinating strategy to create novel potent catalysts for activation of inert chemicals. Herein, a supramolecular approach to enhance the oxidizing ability of a high-valent oxo species of a nitrido-bridged iron porphyrinoid dimer that is a known potent molecular catalyst for light alkane oxidation is reported. For this purpose, a nitrido-bridged dinuclear iron complex of porphyrin-phthalocyanine heterodimer 3 5+, which is connected through a fourfold rotaxane, was prepared. Heterodimer 3 5+ catalyzed ethane oxidation in the presence of H2O2 at a relatively low temperature. The site-selective complexation of 3 5+ with an additional anionic porphyrin (TPPS4−) through π–π stacking and electrostatic interactions afforded a stable 1:1 complex. It was demonstrated that the supramolecular post-synthetic modification of 3 5+ enhances its catalytic activity efficiently. Moreover, supramolecular conjugates achieved higher catalytic ethane oxidation activity than nitrido-bridged iron phthalocyanine dimer, which is the most potent iron-oxo-based molecular catalyst for light-alkane oxidation reported so far. Electrochemical measurements proved that the electronic perturbation from TPPS4− to 3 5+ enhanced the catalytic activity.  相似文献   
22.
23.
We demonstrated the stimulation of neurons at a single-cell level in cultured neuronal network by a focused femtosecond laser. When the femtosecond laser was focused on a neuron loaded with a fluorescent calcium indicator, the fluorescence intensity immediately increased at the laser spot, suggesting that intracellular Ca2+ increases in the neuronal cell due to the femtosecond laser irradiation. The probability of Ca2+ elevation at the laser spot depended on the average laser power, irradiation time, and position of the focal point along the optical axis, indicating that the femtosecond laser activates neurons because of multiphoton absorption. Moreover, after laser irradiation of a single neuron cultured on multielectrode arrays, the evoked electrical activity of the neurons was demonstrated by electrophysiological systems, which concluded that the focused femtosecond laser could achieve stimulating a single neuron in a neuronal network with high spatial and temporal resolution.  相似文献   
24.
Residual chlorines, which originate from HAuCl4, enhance the aggregation of gold (Au) nanoparticles and clusters, preventing the generation of highly active supported Au catalysts. However, the detailed mechanism of residual-chlorine-promoted aggregation of Au is unknown. Herein to investigate this mechanism, density functional theory (DFT) calculations of Au and Cl adsorption onto a reduced rutile TiO2 (110) surface were performed using a generalised gradient approximation Perdew, Burke, and Ernzerhof formula (GGA–PBE) functional and plane-wave basis. Although both Au and Cl atoms prefer to mono-absorb onto oxygen defect sites, Cl atoms have a stronger absorption onto a reduced TiO2 (110) surface, abbreviated as rTiO2 (110) in the following, than Au atoms. Additionally, co-adsorption of a Cl atom and a Au atom or Au nanorod onto a rTiO2 surface was investigated; Cl adsorption onto an oxygen defect site weakens the interaction between a Au atom or Au nanorod and rTiO2 (110) surface. The calculation results suggest that the depletion of interaction between Au and rTiO2 surface is due to strong interaction between Cl atoms at oxygen defect sites and neighbouring bridging oxygen (OB) atoms.  相似文献   
25.
The second method for the synthesis of cis-[Ru(III)Cl(2)(cyclam)]Cl (1) (cyclam = 1,4,8,11-tetraazacyclotetradecane), with use of cis-Ru(II)Cl(2)(DMSO)(4) (DMSO = dimethyl sulfoxide) as a starting complex, is reported together with the synthesis of [Ru(II)(cyclam)(bpy)](BF(4))(2).H(2)O (2) (bpy = 2,2'-bipyridine) from 1. The syntheses of Ru complexes of tris(2-aminoethyl)amine (tren) are also reported. A reaction between K(3)[Ru(III)(ox)(3)] (ox = oxalate) and tren affords fac-[Ru(III)Cl(3)(trenH)]Cl.(1)/(2)H(2)O (3) (trenH = bis(2-aminoethyl)(2-ammonioethyl)amine = monoprotonated tren) and (H(5)O(2))(2)[K(tren)][Ru(III)Cl(6)] (4) as major products and gives fac-[Ru(III)Cl(ox)(trenH)]Cl.(3)/(2)H(2)O (5) in very low reproducibility. A reaction between 3 and bpy affords [Ru(II)(baia)(bpy)](BF(4))(2) (6) (baia = bis(2-aminoethyl)(iminomethyl)amine), in which tren undergoes a selective dehydrogenation into baia. The crystal structures of 2-6 have been determined by X-ray diffraction, and their structural features are discussed in detail. Crystallographic data are as follows: 2, RuF(8)ON(6)C(20)B(2)H(34), monoclinic, space group P2(1)/c with a = 12.448(3) ?, b = 13.200(7) ?, c = 17.973(4) ?, beta = 104.28(2) degrees, V = 2862(2) ?(3), and Z = 4; 3, RuCl(4)O(0.5)N(4)C(6)H(20), monoclinic, space group P2(1)/a with a = 13.731(2) ?, b = 14.319(4) ?, c = 13.949(2) ?, beta = 90.77(1) degrees, V = 2742(1) ?(3), and Z = 8; 4, RuKCl(6)O(4)N(4)C(6)H(28), trigonal, space group R&thremacr; with a = 10.254(4), c = 35.03(1) ?, V = 3190(2) ?(3), and Z = 6; 5, RuCl(2)O(5.5)N(4)C(8)H(22), triclinic, space group P&onemacr; with a = 10.336(2) ?, b = 14.835(2) ?, c = 10.234(1) ?, alpha = 90.28(1) degrees, beta = 90.99(1) degrees, gamma = 92.07(1) degrees, V = 1567.9(4) ?(3), and Z = 4; 6, RuF(8)N(6)C(16)B(2)H(24), monoclinic, space group P2(1)/c, a = 10.779(2) ?, b = 14.416(3) ?, c = 14.190(2) ?, beta = 93.75(2) degrees, V = 2200.3(7) ?(3), and Z = 4. Compound 4 possesses a very unique layered structure made up of both anionic and cationic slabs, {[K(tren)](2)[Ru(III)Cl(6)]}(n)()(n)()(-) and {(H(5)O(2))(4)[Ru(III)Cl(6)]}(n)()(n)()(+) (n = infinity), in which both sheets {[K(tren)](2)}(n)()(2)(n)()(+) and {(H(5)O(2))(4)}(n)()(4)(n)()(+) offer cylindrical pores that are occupied with the [Ru(III)Cl(6)](3)(-) anions. The presence of a C=N double bond of baia in 6 is judged from the C-N distance of 1.28(2) ?. It is suggested that the structural restraint enhanced by the attachment of alkylene chelates at the nitrogen donors of amines results in either the mislocation or misdirection of the donors, leading to the elongation of the Ru-N(amine) distances and to the weakening of their trans influence. Such structural strain is also discussed as related to the spectroscopic and electrochemical properties of the cis-[Ru(II)L(4)(bpy)](2+) complexes (L(4) = (NH(3))(4), (ethylenediamine)(2), and cyclam).  相似文献   
26.
Skeletal Ni catalysts were prepared from Ni–Zr alloys, which possess different chemical composition and atomic arrangements, by a combination of thermal treatment and treatment with aqueous HF. Hydrogen generation from ammonia borane over the skeletal Ni catalysts proceeded efficiently, whereas the amorphous Ni–Zr alloy was inactive. Skeletal Ni prepared from amorphous Ni30Zr70 alloy had a higher catalytic activity than that prepared from amorphous Ni40Zr60 and Ni50Zr50 alloys. The atomic arrangement of the Ni–Zr alloy also strongly affected the surface structure and catalytic activities. Thermal treatment of the amorphous Ni–Zr alloys at a temperature slightly lower than the crystallization temperature led to an increase of the number of surface‐exposed Ni atoms and an enhancement of the catalytic activities for hydrogen generation from ammonia borane. The skeletal Ni catalysts also showed excellent durability and recyclability.  相似文献   
27.
It is reported that Pd?Pt core-shell type nanoclusters in which the inner atoms of the Pd cluster are substituted by Pt significantly enhance the catalytic activity for cycloocatdiene hydrogenation. In order to discuss the electronic states of core-shell clusters, DFT calculations were carried out for Pd13, Pt13, Pt/Pd12, Pd/Pt12 Pd38 and Pd6/Pt32 clusters. From these calculations, it was found that the charge transfer between the core atoms and the shell atoms played an important role for the modification of the electronic state of the surface atoms in them.  相似文献   
28.
[IrCl(cod)]2 and [Cp*IrCl2]2 complexes catalyzed efficiently the Guerbet reaction of primary alcohols to beta-alkylated dimer alcohols in good yields. For instance, the reaction of 1-butanol in the presence of [Cp*IrCl2]2 (1 mol %), t-BuOK (40 mol %), and 1,7-octadiene (10 mol %) produced 2-ethyl-1-hexanol in 93% yield. Various primary alcohols undergo the Guerbet reaction under the influence of Ir complexes to give the corresponding dimer alcohols in good yields. This method provides an alternative direct route to beta-alkylated primary alcohols which are prepared by aldol condensation of aldehydes followed by hydrogenation.  相似文献   
29.
3-Arylthiochromone derivatives were synthesized as new photolabile protecting groups, in which the photoreactivity was switchable based on oxidation of the sulfur atom (sulfide and sulfone); the protected substrates , released the corresponding alcohols, amines or carbonxylic acids almost quantitatively under UV-light in neutral condition and the photoproduct showed high fluorescence intensity.  相似文献   
30.
The synthesis of a mg amount of pure argon containing fullerene allowed the synthesis of the first endohedral superconductors with critical temperatures lower than expected, an indication of the strong influence of the argon atom on the C60 cage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号