首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   6篇
  国内免费   4篇
化学   296篇
晶体学   9篇
力学   11篇
数学   20篇
物理学   91篇
  2021年   2篇
  2018年   2篇
  2016年   4篇
  2015年   9篇
  2014年   7篇
  2013年   22篇
  2012年   31篇
  2011年   29篇
  2010年   21篇
  2009年   16篇
  2008年   20篇
  2007年   15篇
  2006年   17篇
  2005年   26篇
  2004年   22篇
  2003年   20篇
  2002年   27篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   10篇
  1997年   2篇
  1996年   7篇
  1995年   7篇
  1994年   4篇
  1993年   1篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   5篇
  1984年   7篇
  1983年   4篇
  1982年   6篇
  1981年   8篇
  1980年   6篇
  1979年   3篇
  1978年   6篇
  1977年   1篇
  1976年   1篇
  1975年   4篇
  1974年   3篇
  1973年   5篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1958年   1篇
排序方式: 共有427条查询结果,搜索用时 656 毫秒
71.
To improve interfacial phenomena of poly(dimethylsiloxane) (PDMS) as biomaterials, well-defined triblock copolymers were prepared as coating materials by reversible addition-fragmentation chain transfer (RAFT) controlled polymerization. Hydroxy-terminated poly(vinylmethylsiloxane-co-dimethylsiloxane) (HO–PVlDmMS–OH) was synthesized by ring-opening polymerization. The copolymerization ratio of vinylmethylsiloxane to dimethylsiloxane was 1/9. The molecular weight of HO–PVlDmMS–OH ranged from (1.43 to 4.44) × 104, and their molecular weight distribution (Mw/Mn) as determined by size-exclusion chromatography equipped with multiangle laser light scattering (SEC-MALS) was 1.16. 4-Cyanopentanoic acid dithiobenzoate was reacted with HO–PVlDmMS–OH to obtain macromolecular chain transfer agents (macro-CTA). 2-Methacryloyloxyethyl phosphorylcholine (MPC) was polymerized with macro-CTAs. The gel-permeation chromatography (GPC) chart of synthesized polymers was a single peak and Mw/Mn was relatively narrow (1.3–1.6). Then the poly(MPC) (PMPC)–PVlDmMS–PMPC triblock copolymers were synthesized. The molecular weight of PMPC in a triblock copolymer was easily controllable by changing the polymerization time or the composition of the macro-CTA to a monomer in the feed. The synthesized block copolymers were slightly soluble in water and extremely soluble in ethanol and 2-propanol.

Surface modification was performed via hydrosilylation. The block copolymer was coated on the PDMS film whose surface was pretreated with poly(hydromethylsiloxane). The surface wettability and lubrication of the PDMS film were effectively improved by immobilization with the block copolymers. In addition, the number of adherent platelets from human platelet-rich plasma (PRP) was dramatically reduced by surface modification. Particularly, the triblock copolymer having a high composition ratio of MPC units to silicone units was effective in improving the surface properties of PDMS.

By selective decomposition of the Si–H bond at the surface of the PDMS substrate by irradiation with UV light, the coating region of the triblock copolymer was easily controlled, resulting in the fabrication of micropatterns. On the surface, albumin adsorption was well manipulated.  相似文献   

72.
An angle-resolved photoemission study for Ag nanofilm grown on pseudomorphic metastable-fcc-phase Fe(1 0 0) has been done in order to investigate in detail the quantized electronic structures. From the low-energy electron-diffraction and angle-resolved photoemission spectra, it is found that the present Ag nanofilms were grown in the direction of [1 1 1] on pseudomorphic fcc Fe(1 0 0) substrates. The angle-resolved photoemission spectra of Ag nanofilms grown on pseudomorphic fcc Fe(1 0 0) exhibit the features derived from Shockley-type surface state and additional fine-structures derived from the quantized state of Ag sp valence electron. The experimental nanofilm-thickness dependence of binding energies of these quantized states is compared with the theoretical calculation based on the phase accumulation model, taking into account the phase shifts of electron reflection at both interfaces of the Ag nanofilm. From these results, we discuss the quantized electronic structure in Ag nanofilm grown on pseudomorphic fcc Fe(1 0 0).  相似文献   
73.
High-purity specimens of Li6CaLa2Ta2O12 and Li6BaLa2Ta2O12 have been successfully synthesized by solid-state reactions. The analytical chemical compositions of these samples were in good agreement with the nominal compositions of Li6CaLa2Ta2O12 and Li6BaLa2Ta2O12. The Rietveld refinements verified that these compounds have the garnet-type framework structure with the lattice constants of a = 12.725(2) Å for Li6CaLa2Ta2O12 and a = 13.001(4) Å for Li6BaLa2Ta2O12. All of the diffraction peaks of X-ray powder diffraction patterns were well indexed on the basis of cubic symmetry with space group Ia-3d. To make a search for Li sites, the electron density distributions were precisely examined by using the maximum entropy method. Li+ ions occupy partially two types of crystallographic site in these compounds: (i) tetrahedral 24d sites, and (ii) distorted octahedral 96h sites, the latter of which are the vacant sites of the ideal garnet-type structure. The present Li6CaLa2Ta2O12 and Li6BaLa2Ta2O12 samples exhibit the conductivity σ = 2.2 × 10? 6 S cm? 1 at 27 °C (Ea = 0.50 eV) and σ = 1.3 × 10? 5 S cm? 1 at 25 °C (Ea = 0.44 eV), respectively.  相似文献   
74.
Human natural killer—1 (HNK-1) is a sulfated glyco-epitope regulating cell adhesion and synaptic functions. HNK-1 and its non-sulfated forms, which are specifically expressed in the brain and the kidney, respectively, are distinctly biosynthesized by two homologous glycosyltransferases: GlcAT-P in the brain and GlcAT-S in the kidney. However, it is largely unclear how the activity of these isozymes is regulated in vivo. We recently found that bisecting GlcNAc, a branching sugar in N-glycan, suppresses both GlcAT-P activity and HNK-1 expression in the brain. Here, we observed that the expression of non-sulfated HNK-1 in the kidney is unexpectedly unaltered in mutant mice lacking bisecting GlcNAc. This suggests that the biosynthesis of HNK-1 in the brain and the kidney are differentially regulated by bisecting GlcNAc. Mechanistically, in vitro activity assays demonstrated that bisecting GlcNAc inhibits the activity of GlcAT-P but not that of GlcAT-S. Furthermore, molecular dynamics simulation showed that GlcAT-P binds poorly to bisected N-glycan substrates, whereas GlcAT-S binds similarly to bisected and non-bisected N-glycans. These findings revealed the difference of the highly homologous isozymes for HNK-1 synthesis, highlighting the novel mechanism of the tissue-specific regulation of HNK-1 synthesis by bisecting GlcNAc.  相似文献   
75.
The Mössbauer spectra of ilmenite (FeTiO3), Fe2+-doped ilmenites, MTiO3 (M = Cd, Mn, Zn, Co, Mg and Ni) and MGeO3 (M = Mn, Zn and Mg), have been studied from 4.2 K to room temperature. Systematic variations in the isomer shift and quadrupole splitting at room temperature are correlated with the change in ionic radii of the host M ions and the c/a ratio of the host crystal, respectively. The quadrupole splittings show a remarkable temperature variation; the magnetic ilmenites show either a sudden increase or a sudden decrease of quadrupole splittings below the Néel temperature, depending on the orientation of the spin axis with respect to the c axis.  相似文献   
76.
Understanding of electronic and optical features of single-walled carbon nanotubes (SWNTs) has been a central issue in science and nanotechnology of carbon nanotubes. We describe the detection of both the positive trion (positively charged exciton) and negative trion (negatively charged exciton) as a three-particle bound state in the SWNTs at room temperature by an in situ photoluminescence spectroelectrochemistry method for an isolated SWNT film cast on an ITO electrode. The electrochemical hole and electron dopings enable us to detect such trions on the SWNTs. The large energy difference between the singlet bright exciton and the negative and positive trions showing a tube diameter dependence is determined by both the exchange splitting energy and the trion binding energy. In contrast to conventional compound semiconductors, on the SWNTs, the negative trion has almost the same binding energy to the positive trion, which is attributed to nearly identical effective masses of the holes and electrons.  相似文献   
77.
Reflectometric interference spectroscopy (RIfS) is a label-free, time-resolved technique, and suitable for detecting antibody–antigen interaction. This work describes a continuous flow biosensor for C-reactive protein (CRP), involving an effective immobilization method of a monoclonal antibody against CRP (anti-CRP) to achieve highly sensitive RIfS-based detection of CRP. The silicon nitride-coated silicon chip (SiN chip) for the RIfS sensing was first treated with trimethylsilylchloride (TMS), followed by UV-light irradiation to in situ generation of homogeneous silanols on the surface. Following amination by 3-aminopropyltriethoxysilane, carboxymethyldextran (CMD) was grafted, and subsequently, protein A was immobilized to create the oriented anti-CRP surface. The immobilization process of protein A and anti-CRP was monitored with the RIfS system by consecutive injections of an amine coupling reagent, protein A and anti-CRP, respectively, to confirm the progress of each step in real time. The sensitivity was enhanced when all of the processes were adopted, suggesting that the oriented immobilization of anti-CRP via protein A that was coupled with the grafted CMD on the aminated surface of TMS-treated SiN chip. The feasibility of the present sensing system was demonstrated on the detection of CRP, where the silicon-based inexpensive chips and the simple optical setup were employed. It can be applied to other target molecules in various fields of life science as a substitute of surface plasmon resonance-based expensive sensors.  相似文献   
78.
A fully transparent and flexible field emission device (FED) has been demonstrated. Single‐walled carbon nanotubes (SWCNTs) coated on arylite substrate were used as electron emitters for the FED and a novel metavanadate phosphor coated on the SWCNTs/arylite film was used as transparent and flexible screen. The SWCNTs/arylite based emitters and the SWCNTs/arylite/metal‐vanadate‐based phosphor showed a transmittance value of 92.6% and 54%, respectively. The assembled device also showed satisfactory transparency and flexibility as well as producing significant current. Metavanadate phosphor is considered to be an excellent candidate due to its superior luminescence properties and easy fabrication onto transparent and flexible conductive substrate at room temperature while retaining reasonable transparency of the substrate. Thus, its transparency and flexibility will open the door to next‐generation FEDs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
79.
Structures of AgAF6 (A=Sb, Ta) have been determined by X-ray single crystal studies at ambient temperatures. AgSbF6 crystallizes in space group Ia with a=979.85(4) pm, V=9.4076(12)×108 pm3, z=8, and AgTaF6 crystallizes in space group P42/mcm with a=499.49(4) pm, c=960.51(8) pm, V=2.3964(6)×108 pm3, z=2. Only the crystal system and cell parameters were obtained for the isomorphic AgNbF6; primitive tetragonal, a=497.80(10) pm, b=960.40(10) pm, V=2.3799(12)×108 pm3, z=2. The results of the Raman spectroscopy of AgAF6 support the obtained structures. The structures are discussed by comparing with that of AgPF6 and AgAsF6 which have recently been determined in a series of our study.  相似文献   
80.
New methacrylates having a phospholipid polar group which was connected to various lengths of poly(oxyethylene) chains to form a polymerizable group (MEOnPC) were synthesized. The MEOnPC could polymerize with n-butyl methacrylate (BMA) in ethanol using a conventional radical polymerization technique. The unit mole fraction of MEOnPC in the polymer corresponded to that in the feed monomer solution. The MEOnPC polymers were soluble in ethanol, insoluble in water, but swelled in water and became hydrated. On the surface of a poly(BMA) membrane coated with MEOnPC, the phosphorylcholine groups of the MEOnPC unit present were determined by x-ray photoelectron spectroscopy. As a fundamental evaluation for biomedical materials, adsorption of one of the plasma proteins, fibrinogen, on acrylic beads coated with the MEOnPC polymers was evaluated. The amount of fibrinogen adsorbed on the MEOnPC polymer was smaller than that on the original acrylic beads, poly(BMA) and poly(2-hydroxyethyl methacrylate). The increase in the MEOnPC unit mole fraction in the polymer showed more effective protein adsorption-resistant properties. © 1996 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号