首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54325篇
  免费   8618篇
  国内免费   5768篇
化学   38206篇
晶体学   680篇
力学   3121篇
综合类   332篇
数学   6091篇
物理学   20281篇
  2024年   183篇
  2023年   1131篇
  2022年   2096篇
  2021年   2241篇
  2020年   2288篇
  2019年   2171篇
  2018年   1849篇
  2017年   1800篇
  2016年   2650篇
  2015年   2685篇
  2014年   3158篇
  2013年   4033篇
  2012年   4924篇
  2011年   4867篇
  2010年   3365篇
  2009年   3150篇
  2008年   3411篇
  2007年   3006篇
  2006年   2702篇
  2005年   2316篇
  2004年   1788篇
  2003年   1430篇
  2002年   1332篇
  2001年   1057篇
  2000年   923篇
  1999年   1066篇
  1998年   877篇
  1997年   816篇
  1996年   808篇
  1995年   734篇
  1994年   627篇
  1993年   535篇
  1992年   441篇
  1991年   398篇
  1990年   343篇
  1989年   247篇
  1988年   182篇
  1987年   170篇
  1986年   164篇
  1985年   147篇
  1984年   97篇
  1983年   96篇
  1982年   70篇
  1981年   48篇
  1980年   32篇
  1979年   26篇
  1977年   20篇
  1976年   24篇
  1975年   23篇
  1972年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
The peroxidase-like activity of vitamin B6 (VB6) was firstly demonstrated by catalyzing the peroxidase chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) at the existence of H2O2. The influence of different factors on the catalytic property of VB6, including pH, temperature, VB6 concentration, and incubation time, were investigated. The steady-state kinetic study results indicate that VB6 possesses higher affinity to H2O2 than natural horseradish peroxidase and some other peroxidase mimics. Besides, the radical quenching experiment results confirm that hydroxyl radical (•OH) accounts for the catalytic process. Based on the excellent peroxidase-like catalytic activity of VB6, the colorimetric methods for H2O2 and gallic acid (GA) detection were developed by measuring the absorbance variance of the catalytic system. Under the optimal conditions, the linear ranges of the methods for H2O2 and GA determination with good selectivity are 50.0–600.0 μM and 10.0–50.0 μM, respectively. In addition, the developed method was applied in the detection of H2O2 in milk samples and evaluation of total antioxidant capacity of different tea infusions. This study may broaden the application prospect of VB6 in environmental and biomedical analysis fields, contribute to profound insight of the physiological functions of VB6, as well as lay foundation for further excavation of small-molecule peroxidase mimics.  相似文献   
152.
The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced electronic property tuning of MoS_2 are investigated by in situ ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy measurements.A downward band-bending of MoS_2-related electronic states along with the decreasing work function,which are induced by the electron transfer from Cs overlayers to MoS_2,is observed after the functionalization of MoS_2 with Cs,leading to n-type doping.Meanwhile,when MoS_2 is modified with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane(F_4-TCNQ),an upward band-bending of MoS_2-related electronic states along with the increasing work function is observed at the interfaces.This is attributed to the electron depletion within MoS_2 due to the strong electron withdrawing property of F_4-TCNQ,indicating p-type doping of MoS_2.Our findings reveal that surface transfer doping is an effective approach for electronic property tuning of MoS_2 and paves the way to optimize its performance in electronic and optoelectronic devices.  相似文献   
153.
We systematically measure the superconducting(SC) and mixed state properties of high-quality CsV_3 Sb_5 single crystals with T_c~3.5 K.We find that the upper critical field H_(c2)(T) exhibits a large anisotropic ratio of H_(c2)~(ab)/H_(c2)~c~9 at zero temperature and fitting its temperature dependence requires a minimum two-band effective model.Moreover,the ratio of the lower critical field,H_(c1)~(ab)/H_(c1)~c,is also found to be larger than 1,which indicates that the in-plane energy dispersion is strongly renormalized near Fermi energy.Both H_(c1)(T) and SC diamagnetic signal are found to change little initially below T_c~3.5 K and then to increase abruptly upon cooling to a characteristic temperature of ~2.8 K.Furthermore,we identify a two-fold anisotropy of in-plane angular-dependent magnetoresistance in the mixed state.Interestingly,we find that,below the same characteristic T~2.8 K,the orientation of this two-fold anisotropy displays a peculiar twist by an angle of 60° characteristic of the Kagome geometry.Our results suggest an intriguing superconducting state emerging in the complex environment of Kagome lattice,which,at least,is partially driven by electron-electron correlation.  相似文献   
154.
A turnout switch machine is key equipment in a railway, and its fault condition has an enormous impact on the safety of train operation. Electrohydraulic switch machines are increasingly used in high-speed railways, and how to extract effective fault features from their working condition monitoring signal is a difficult problem. This paper focuses on the sectionalized feature extraction method of the oil pressure signal of the electrohydraulic switch machine and realizes the fault detection of the switch machine based on this method. First, the oil pressure signal is divided into three stages according to the working principle and action process of the switch machine, and multiple features of each stage are extracted. Then the max-relevance and min-redundancy (mRMR) algorithm is applied to select the effective features. Finally, the mini batch k-means method is used to achieve unsupervised fault diagnosis. Through experimental verification, this method can not only derive the best sectionalization mode and feature types of the oil pressure signal, but also achieve the fault diagnosis and the prediction of the status of the electrohydraulic switch machine.  相似文献   
155.
156.
The lack of effective treatment for neurological disorders has encouraged the search for novel therapeutic strategies. Remarkably, neuroinflammation provoked by the activated microglia is emerging as an important therapeutic target for neurological dysfunction in the central nervous system. In the pathological context, the hyperactivation of microglia leads to neuroinflammation through the release of neurotoxic molecules, such as reactive oxygen species, proteinases, proinflammatory cytokines and chemokines. Cannabidiol (CBD) is a major pharmacologically active phytocannabinoids derived from Cannabis sativa L. CBD has promising therapeutic effects based on mounting clinical and preclinical studies of neurological disorders, such as epilepsy, multiple sclerosis, ischemic brain injuries, neuropathic pain, schizophrenia and Alzheimer’s disease. A number of preclinical studies suggested that CBD exhibited potent inhibitory effects of neurotoxic molecules and inflammatory modulators, highlighting its remarkable therapeutic potential for the treatment of numerous neurological disorders. However, the molecular mechanisms of action underpinning CBD’s effects on neuroinflammation appear to be complex and are poorly understood. This review summarises the anti-neuroinflammatory activities of CBD against various neurological disorders with a particular focus on their main molecular mechanisms of action, which were related to the downregulation of NADPH oxidase-mediated ROS, TLR4-NFκB and IFN-β-JAK-STAT pathways. We also illustrate the pharmacological action of CBD’s derivatives focusing on their anti-neuroinflammatory and neuroprotective effects for neurological disorders. We included the studies that demonstrated synergistic enhanced anti-neuroinflammatory activity using CBD and other biomolecules. The studies that are summarised in the review shed light on the development of CBD, including its derivatives and combination preparations as novel therapeutic options for the prevention and/or treatment of neurological disorders where neuroinflammation plays an important role in the pathological components.  相似文献   
157.
Actinomycetes play a vital role as one of the most important natural resources for both pharmaceutical and agricultural applications. The actinomycete strain SPRI-371, isolated from soil collected in Jiangsu province, China, was classified as Streptomyces aureus based on its morphological, physiological, biochemical and molecular biological characteristics. Its bacterial activity metabolites were identified as aureonuclemycin (ANM), belonging to adenosine derivatives with the molecular formula C16H19N5O9 for ANM A and C10H13N5O3 for ANM B. Simultaneously, the industrial fermentation process of a mutated S. aureus strain SPRI-371 was optimized in a 20 m3 fermentation tank, featuring a rotation speed of 170 rpm, a pressure of 0.05 MPa, an inoculum age of 36–40 h and a dissolved oxygen level maintained at 1–30% within 40–80 h and at >60% in the later period, resulting in an ANM yield of >3700 mg/L. In the industrial separation of fermentation broth, the sulfuric acid solution was selected to adjust pH and 4# resin was used for adsorption. Then, it was resolved with 20% ethanol solution and concentrated in a vacuum (60–65 °C), with excellent results. Antibacterial experiments showed that ANM was less active or inactive against Xanthomonas oryzae pv. oryzae, Xanthomonas citri subsp. citri and Xanthomonas oryzae pv. oryzicola and most bacteria, yeast and fungi in vitro. However, in vivo experiments showed that ANM exhibited extremely significant protective and therapeutic activity against diseases caused by X. oryzae pv. oryzae and X. oryzae pv. oryzicola in rice and X. citri in oranges and lemons. In field trials, ANM A 150 gai/ha + ANM B 75 gai/ha exhibited excellent therapeutic activity against rice bacterial leaf blight, citrus canker and rice bacterial leaf streak. Furthermore, as the dosage and production cost of ANM are lower than those of commercial drugs, it has good application prospects.  相似文献   
158.
Iron–manganese silicate (IMS) was synthesized by chemical coprecipitation and used as a catalyst for ozonating acrylic acid (AA) in semicontinuous flow mode. The Fe-O-Mn bond, Fe-Si, and Mn-Si binary oxide were formed in IMS on the basis of the results of XRD, FTIR, and XPS analysis. The removal efficiency of AA was highest in the IMS catalytic ozonation processes (98.9% in 15 min) compared with ozonation alone (62.7%), iron silicate (IS) catalytic ozonation (95.6%), and manganese silicate catalytic ozonation (94.8%). Meanwhile, the removal efficiencies of total organic carbon (TOC) were also improved in the IMS catalytic ozonation processes. The IMS showed high stability and ozone utilization. Additionally, H2O2 was formed in the process of IMS catalytic ozonation. Electron paramagnetic resonance (EPR) analysis and radical scavenger experiments confirmed that hydroxyl radicals (•OH) were the dominant oxidants. Cl, HCO3, PO43−, Ca2+, and Mg2+ in aqueous solution could adversely affect AA degradation. In the IMS catalytic ozonation of AA, the surface hydroxyl groups and Lewis acid sites played an important role.  相似文献   
159.
Poly(ethylene oxide)(PEO) is a classic matrix model for solid polymer electrolyte which can not only dissociate lithium-ions(Li+),but also can conduct Li+through segmental motion in long-range.However,the crystal aggregation state of PEO restricts the conduction of Li+ especially at room temperature.In this work,an amorphous polymer electrolyte with ethylene oxide(EO) and propylene oxide(PO) block structure(B-PEG@DMC) synthesized by the transesterification is firstly obtained,showing ...  相似文献   
160.
An effective anti-cancer therapy should exclusively target cancer cells and trigger in them a broad spectrum of cell death pathways that will prevent avoidance. Here, we present a new approach in cancer therapy that specifically targets the mitochondria and ER of cancer cells. We developed a peptide derived from the flexible and transmembrane domains of the human protein NAF-1/CISD2. This peptide (NAF-144-67) specifically permeates through the plasma membranes of human epithelial breast cancer cells, abolishes their mitochondria and ER, and triggers cell death with characteristics of apoptosis, ferroptosis and necroptosis. In vivo analysis revealed that the peptide significantly decreases tumor growth in mice carrying xenograft human tumors. Computational simulations of cancer vs. normal cell membranes reveal that the specificity of the peptide to cancer cells is due to its selective recognition of their membrane composition. NAF-144-67 represents a promising anti-cancer lead compound that acts via a unique mechanism.

An effective anti-cancer therapy should exclusively target cancer cells and trigger in them a broad spectrum of cell death pathways that will prevent avoidance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号