首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   41篇
  国内免费   37篇
化学   318篇
晶体学   3篇
力学   16篇
数学   32篇
物理学   110篇
  2024年   1篇
  2023年   25篇
  2022年   40篇
  2021年   50篇
  2020年   46篇
  2019年   48篇
  2018年   33篇
  2017年   30篇
  2016年   17篇
  2015年   21篇
  2014年   23篇
  2013年   24篇
  2012年   17篇
  2011年   20篇
  2010年   10篇
  2009年   7篇
  2008年   10篇
  2007年   12篇
  2006年   7篇
  2005年   6篇
  2004年   7篇
  2003年   7篇
  2002年   1篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1973年   1篇
排序方式: 共有479条查询结果,搜索用时 15 毫秒
101.
The mechanisms of CO2 coupling with the propargylic alcohol using alkali carbonates M2CO3 (M = Li, Na, K, Cs) have been investigated by means of density functional theory calculations. The calculations reveal that the target product tetronic acid (TA) is yielded through two stages: (a) the formation of the α-alkylidene cyclic carbonate (αACC) intermediate via Cs2CO3-mediated carboxylative cyclization of the propargylic alcohol with CO2, and (b) the conversion of the αACC intermediate with Cs2CO3 to produce the cesium salt of the TA. Since the overall kinetic barriers for the two stages are comparable and affordable, the excellent chemoselectivity to the TA should be primarily originated from the high thermodynamic stability of the cesium salt of the TA. Moreover, relative to the TA, the possibility to yield the by-product acyclic carbonate can be excluded due to the both kinetics and thermodynamic inferiority. This result is different from the organic base-mediated reaction. Alternatively, our calculations predict that CsHCO3 together generated with the cesium salt of the TA might also be an available mediating reagent for the incorporation of CO2 with the propargylic alcohol. Compared to other alkali carbonates M2CO3 (M = Li, Na, K), the stronger basicity of Cs2CO3 and the lower ionic potential of cesium ion can raise the effective concentration of the αACC intermediate, and thus the conversion of the αACC intermediate into the cesium salt of the TA can be achieved with high yield.  相似文献   
102.
An artificial tongue that detects astringent components for a comprehensive evaluation of taste has not been established to date. Herein, we first propose fluorescent polythiophene (PT) derivatives ( S1 – S3 ) modified with 3-pyridinium boronic acid as supramolecular chemosensors for wine components including astringent procyanidin C1. After numerous attempts for the synthetic conditions, more than 95 mol % of the PT unit was modified with the pyridinium boronic acid moiety. To evaluate the PT derivatives as chemosensors of the artificial tongue, qualitative and quantitative analyses were performed with four types of wine components (i.e., sweet, sour, bitter, and astringent tastes) in combination with pattern recognition models. Notably, procyanidin C1 in the actual wine sample was successfully detected in a quantitative manner. In other words, we have established an authentic artificial tongue using PT based supramolecular chemosensors.  相似文献   
103.
Oleic acid (OAc) is commonly used as a surfactant and/or solvent for the oil-phase synthesis of metal nanocrystals but its explicit roles are yet to be resolved. Here, we report a systematic study of this problem by focusing on a synthesis that simply involves heating of Pt(acac)2 in OAc for the generation of Pt nanocrystals. When heated at 80 °C, the ligand exchange between Pt(acac)2 and OAc leads to the formation of a PtII–oleate complex that serves as the actual precursor to Pt atoms. Upon increasing the temperature to 120 °C, the decarbonylation of OAc produces CO, which can act as a reducing agent for the generation of Pt atoms and thus formation of nuclei. Afterwards, several catalytic reactions can take place on the surface of the Pt nuclei to produce more CO, which also serves as a capping agent for the formation of Pt nanocrystals enclosed by {100} facets. The emergence of Pt nanocrystals further promotes the autocatalytic surface reduction of PtII precursor to enable the continuation of growth. This work not only elucidates the critical roles of OAc at different stages in a synthesis of Pt nanocrystals, but also represents a pivotal step forward toward the rational synthesis of metal nanocrystals.  相似文献   
104.
One-step synthesis of 9-anthrone lactone derivatives from 1-acetyloxyanthraquinone with a variety of dicarbonyl substrates in the presence of K2CO3 by Knovenagel condensation and intramolecular cyclization is developed. Possible reaction mechanisms have been investigated using the density functional theory (DFT), which has been widely used in the study of reaction mechanism. The strategy could be useful for the synthesis of the core structure of marine natural product aspergiolide.  相似文献   
105.
The self‐assembly of a rod–coil amphiphilic block copolymer (ABCP) led to Im m and Pn m polymer cubosomes and p6mm polymer hexasomes. This is the first time that these structures are observed in a rod–coil system. By varying the hydrophobic chain length, the initial concentration of the polymer solution, or the solubility parameter of the mixed solvent, head–tail asymmetry is adjusted to control the formation of polymer cubosomes or hexasomes. The formation mechanism of the polymer cubosomes was also studied. This research opens up a new way for further study of the bicontinuous and inverse phases in different ABCP systems.  相似文献   
106.
Great attention is being increasingly paid to photothermal conversion in the near-infrared (NIR)-II window (1000–1350 nm), where deeper tissue penetration is favored. To date, only a limited number of organic photothermal polymers and relevant theory have been exploited to direct the molecular design of polymers with highly efficient photothermal conversion, specifically in the NIR-II window. This work proposes a fused backbone structure locked via an intramolecular hydrogen bonding interaction and double bond, which favors molecular planarity and rigidity in the ground state and molecular flexibility in the excited state. Following this proposal, a particular class of NIR-II photothermal polymers are prepared. Their remarkable photothermal conversion efficiency is in good agreement with our strategy of coupling polymeric rigidity and flexibility, which accounts for the improved light absorption on going from the ground state to the excited state and nonradiative emission on going from the excited state to the ground state. It is envisioned that such a concept of coupling polymeric rigidity and flexibility will offer great inspiration for developing NIR-II photothermal polymers with the use of other chromophores.

Low bandgap and large deformation generally conflict each other. This work couples molecular rigidity and flexibility by intramolecular hydrogen bonds and double bonds to achieve NIR-II light absorption and reinforced internal conversion at the same time.  相似文献   
107.
TiCl4 and MnSO4· H2O as raw materials are hydrolyzed stiochiometrically, following the intermediate of oxide hydrating reacts at 150°C, 0.5 MPa in high-pressure reactor, after filtering, washing and drying, nanometric TiO2-MnO2 (Ti1-X Mn X O2) is prepared. The effects of the reaction temperature and time on nanometric TiO2-MnO2 are also discussed. XRD shows that the product is TiO2-MnO2 with amorphous phase. After being sintered at above 780 °C, it transfers into Ti1-X Mn X O2 with a rutile structure. TEM shows that TiO2-MnO2 is the spherical particle. And the average diameter of the particles is 20 nm. The optical absorbance was determined by UV-265 spectrophotometer after dispersing the sample in the mixture of water and glycerol with the ratio of 1 : 1 equably. It is found that the nano-material possesses the advantages of both nano-TiO2 and nano-MnO2, and it has strong absorption in the UV and visible region. Photodegradation of dyes in an aqueous solution is investigated using nanometricTiO2-MnO2 as a photocatalyst. The results show that after 60 min illumination, the decolorization rate of the acidic red B and acidic black 234 dye can be as high as 100%.  相似文献   
108.
Through the ferroelectric nanoparticles of BaTiO3 (BTO) doping, the response time for the frequency modulation of the polymer-dispersed liquid crystal (PDLC) was improved. The BTO-doped PDLC cells were prepared by polymerisation induced phase separation (PIPS) process using UV light. The capacitance of the PDLC composites was measured with an impedance analyzer in the frequency range of 100 Hz–1 MHz at 1 V. The dynamic signal for the response time of the PDLC devices was monitored through a digital oscilloscope. The electro-optical properties of the PDLC were found to strongly depend on the doped BTO concentration. The BTO doping caused a large increase in the capacitance. The dielectric constants were drastically decreased in the samples with rather low BTO doping ratio at a high frequency. No outstanding difference in the rising time of the LC was observed in the BTO-doped PDLC device, but the falling time was significantly decreased from 0.334 to 0.094 s. The present results imply that the nanoparticle-doping technology could improve the electro-optical performance of the PDLC requiring fast response and frequency modulation, such as optical modulators and PDLC-hybrid electroluminescence device for flexible electronic devices.  相似文献   
109.
110.
To elucidate the chemical linkages between lignin and carbohydrates in ginkgo cell walls, 13C-2H-enriched cell wall-dehydrogenation polymers (CW-DHP) were selectively prepared with cambial tissue from Ginkgo biloba L. by feeding D-glucose-[6-2H2], coniferin-[α-13C], and phenylalanine ammonia-lyase (PAL) inhibitor. The abundant detection of 13C and 2H confirmed that D-glucose-[6-2H2] and coniferin-[α-13C] were involved in the normal metabolism of ginkgo cambial cells that had been effectively labelled with dual isotopes. In the ginkgo CW-DHP, ketal and ether linkages were formed between the C-α of lignin side chains and carbohydrates, as revealed by solid state CP/MAS 13C-NMR differential spectroscopy. Furthermore, the DMSO/TBAH ionic liquids system was used to fractionate the ball-milled CW-DHP into three lignin-carbohydrate complex (LCC) fractions: glucan–lignin complex (GL), glucomannan–lignin complex (GML), and xylan–lignin complex (XL). The XRD determination indicated that the cellulose type I of the GL was converted into cellulose type II during the separation process. The molecular weight was in the order of Ac-GL > Ac-GML > XL. The 13C-NMR and 1H-NMR differential spectroscopy of 13C-2H-enriched GL fraction indicated that lignin was linked with cellulose C-6 by benzyl ether linkages. It was also found that there were benzyl ether linkages between the lignin side chain C-α and glucomannan C-6 in the 13C-2H-enriched GML fraction. The formation of ketal linkages between the C-α of lignin and xylan was confirmed in the 13C-2H-enriched XL fraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号