A new methodology for the extraction and characterization of proteins from Coomassie-stained sodium dodecylsulfate polyacrylamide gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been described. The utility of this methodology was demonstrated in the characterization of adenovirus proteins. The key steps in the extraction and destaining process involve washing the excised band with a combination of solvents that include 10% acetic acid, acetonitrile, methanol, and formic acid:water:isopropanol mixture. By using this procedure, we determined adenovirus proteins with molecular weights ranging from 10,000 to 110,000 Da by MALDI-MS, obtaining a detection limit of approximately 6 pmol. Parallel experiments were successfully carried out to analyze adenovirus proteins from Cu-stained gels. It was observed that increase in laser intensity resulted in significant improvements in the quality of MALDI mass spectra for the analysis of inefficiently destained proteins from Cu-stained gels. 相似文献
The electrochemistry of a macrocyclic metal complex Fe(notpH3) [notpH6 = 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylene-phosphonic acid)] reveals that the protonation/deprotonation of the non-coordinated P-OH groups in Fe(notpH3) affects its formal potential value (E0′) considerably. Plotting E0′ as function of solution pH gives a straight line with a slope of −585 mV pH−1 in the pH range of 3.4-4.0, which is about ten times larger than the theoretical value of −58 mV pH−1 for a reversible proton-coupled single-electron transfer at 20 °C. A sensitive pH responsive electrochemical switch sensor is thus developed based on Fe(notpH3) which shows an “on/off” switching at pH ∼ 4.0. 相似文献
Achieving low friction and wear of poly(phenylene sulfide)(PPS) without using fillers or blending is a challenging task, but one of considerable practical importance. Here we describe how neat PPS with high tribological performance is achieved by manipulating processing parameters(pressure, flow and temperature). The key to achieving high tribological performance is comparatively high molecular chain orientation, realized in neat PPS, at high shear rates and low pressure. The friction coefficient and wear rate are as low as ~0.3 and~10-6 mm3·N-1·m-1, respectively, which break the record for neat PPS. These values are even better than those for PPS-based blends and comparable to PPS composites. Further studies show, for the first time, that wear rate decreases exponentially with increasing molecular chain orientation, prompting us to revise the classical Archard's law by including the effect of molecular chain orientation. These findings open the possibility of using neat PPS in highly demanding tribological applications. 相似文献
As a special subset of calix[4]arene, calix[4]resorcinarene is an excellent molecular platform which could be modified by introducing functional groups to multiple sites at the upper and lower rims. There are mainly three ways to build functionalized calix[4]resorcinarene derivatives: (1) modification on the C-2 sites of calix[4]resorcinarenes; (2) modification on the phenolic hydroxyl groups of calix[4]resorcinarenes; (3) modification on the bridging methylenes at lower rim of calix[4]resorcinarenes. Functionalized calix[4]resorcinarene derivatives play an important role in the development of self-assembly chemistry, among which hydrogen bonding and metal coordination are the two most common interactions to obtain multicomponent structures. Moreover, due to the excellent topological structures and various active substituents of functionalized calix[4]resorcinarene derivatives, their applications in various fields, such as nanoparticles, catalysts, fluorescent materials, and sensors, have been briefly presented in this paper.
The structural characterization of a new oligosaccharide antibiotic, Everninomicin-6 (EV-6), is described. Detailed fast-atom bombardment mass spectrometry (FAB-MS) studies along with NMR and chemical degradation methods were conducted to elucidate the structure of EV-6. The effects of the use of various matrices, including salt addition, on the quality of the FAB-MS were explored. The use of 3-nitro benzyl alcohol, dimethyl sulfoxide (DMSO), and NaCl produced the best results: an intense sodiated molecular ion plus structurely informative fragmentation. FAB-MS yields information providing the complete sugar sequence information for everninomicins, which is quite valuable to the elucidation of the structure of this complex oligosaccharide antibiotic. In addition, the results of accurate mass work with the molecular ion are consistent with the assigned structure. The use of electrospray ionization mass spectrometry (ESI-MS) and ESI-MS/MS for the study of EV-6 was investigated and was found to produce an abundant molecular ion with limited structural information. These results revealed that EV-6 resembled EV-D quite closely except for the absence of the nitrosugar and the replacement on ring g of the -CH2OCH3 group with a -CH2OH group. 相似文献