首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21060篇
  免费   4081篇
  国内免费   3189篇
化学   15520篇
晶体学   299篇
力学   1306篇
综合类   302篇
数学   2588篇
物理学   8315篇
  2024年   38篇
  2023年   365篇
  2022年   554篇
  2021年   676篇
  2020年   882篇
  2019年   867篇
  2018年   738篇
  2017年   717篇
  2016年   980篇
  2015年   1050篇
  2014年   1282篇
  2013年   1590篇
  2012年   1931篇
  2011年   2066篇
  2010年   1490篇
  2009年   1512篇
  2008年   1607篇
  2007年   1402篇
  2006年   1314篇
  2005年   1091篇
  2004年   910篇
  2003年   690篇
  2002年   704篇
  2001年   600篇
  2000年   472篇
  1999年   420篇
  1998年   331篇
  1997年   333篇
  1996年   286篇
  1995年   241篇
  1994年   224篇
  1993年   161篇
  1992年   113篇
  1991年   129篇
  1990年   110篇
  1989年   76篇
  1988年   75篇
  1987年   64篇
  1986年   46篇
  1985年   33篇
  1984年   29篇
  1983年   28篇
  1982年   27篇
  1981年   18篇
  1980年   16篇
  1979年   6篇
  1976年   6篇
  1975年   8篇
  1959年   5篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
971.
The temperature- and pH-sensitive hydrogels, poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-co-AAc)), were synthesized via frontal polymerization (FP). The reaction components have been varied in order to find their influences on frontal parameters and copolymer features. The results showed that front velocity and front temperature were dependent on the initiator concentration, reactant dilution, and NIPMA/AAc molar ratio. In addition, the morphology and sensitive behavior of the FP hydrogels were mainly affected by monomers’ ratio. Namely, the pore size, swelling abilities, LCST, and response kinetics of copolymer hydrogels obviously increased with the increasing acrylic acid concentration; however, they slightly changed with varying of amounts of initiator and solvent. Finally, in comparison with the hydrogels prepared by conventional batch polymerization, the ones synthesized by frontal polymerization exhibited more homogeneous chain composition and improved microstructure and response ability.  相似文献   
972.
The hierarchy structures and orientation behavior of high-density polyethylene (HDPE) molded by conventional injection molding (CIM) and gas-assisted injection molding (GAIM) were intensively examined by using scanning electronic microscopy (SEM) and 2D wide-angle X-ray diffraction (2D-WAXD). Results show that the spatial variation of crystals across the thickness of sample molded by CIM was characterized by a typical skin–core structure as a result of general shear-induced crystallization. Unusually, the crystalline morphologies of the parts prepared by GAIM, primarily due to the penetration of secondary high-compressed gas that was exerted on the polymer melt during gas injection, featured a richer and fascinating supermolecular structure. Besides, the oriented lamellar structure, general shish–kebab structure, and common spherulites existed in the skin, sub-skin, and gas channel region, respectively; a novel morphology of shish–kebab structure was seen in the sub-skin layer of the GAIM parts of HDPE. This special shish–kebab structure (recognized as “bending shish–kebab”) was neither parallel nor perpendicular to the flow direction but at an angle. Furthermore, there was a clear interface between the bending and the normal shish–kebab structures, which may be very significant for our understanding of the melt flow or polymer rheology under the coupling effect of multi-fluid flow and complex temperature profiles in the GAIM process. Based on experimental observations, a schematic illustration was proposed to interpret the formation mechanism of the bending shish–kebab structure during GAIM process.  相似文献   
973.
A one-pot template-free route was developed for the synthesis of novel tetraethylenepentamine modified porous silica as CO2 adsorbents, the obtained materials were characterized by N2 adsorption/desorption, thermogravimetry, elemental analysis, Fourier transform infrared spectrometry,scanning electron microscopy and transmission electron microscopy. It was found that the amine species were inserted into the silica skeleton, which considerably enhanced their dispersion. Compared with similar materials derived from impregnation, the porous structure of the silica can be better reserved, leading to a promising CO2 adsorption capacity of 3.98 mmol CO2/g-adsorbent and a fast adsorption kinetic in simulated flue gas at 348 K. The resulted adsorbents could also be easily regenerated and showed a good durability in multiple adsorption–desorption cycles. All these features make this method a promising option for the preparation of CO2 adsorbents.  相似文献   
974.
A highly oriented ZnO nanorod array film was fabricated on glass substrate by combinations of Sol–Gel and hydrothermal. The film exhibits perfect superhydrophobicity with a contact angle of 155° and a glide angle of 4° after being surface modified by fluoroalkylsilane, which is similar with wings’ property and structures of large yellow spots mosquitoes. Interestingly, the ZnO nanorods film were converted from superhydrophobicity into superhydrophilicity under ultraviolet light for 2 h due to the decomposition of fluoroalkyl chain of fluoroalkylsilane and the photosensitivity of ZnO surface. The transition mechanisms of wettability are discussed on the basis of correlated theories.  相似文献   
975.
Carbon dots (Cdots) are an important probe for imaging and sensing applications because of their fluorescence property, good biocompatibility, and low toxicity. However, complex procedures and strong acid treatment are often required and Cdots suffer from low photoluminescence (PL) emission. Herein, a facile and general strategy using carbonization of precursors and then extraction with solvents is proposed for the preparation of nitrogen‐doped Cdots (N‐Cdots) with 3‐(3,4‐dihydroxyphenyl)‐L ‐alanine (L ‐DOPA), L ‐histidine, and L ‐arginine as precursor models. After they are heated, the precursors become carbonized. Nitrogen‐doped Cdots are subsequently extracted into N,N′‐dimethylformamide (DMF) from the carbogenic solid. A core–shell structure of Cdots with a carbon core and the oxygen‐containing shell was observed. Nitrogen has different forms in N‐Cdots and oxidized N‐Cdots. The doped nitrogen and low oxidation level in N‐Cdots improve their emission significantly. The N‐Cdots show an emission with a nitrogen‐content‐dependent intensity and Cdot‐size‐dependent emission‐peak wavelength. Imaging of HeLa cells, a human cervical cancer cell line, and HepG2 cells, a human hepatocellular liver carcinoma line, was observed with high resolution using N‐Cdots as a probe and validates their use in imaging applications and their multicolor property in the living cell system.  相似文献   
976.
Microporous vanadosilicates with octahedral VO6 and tetrahedral SiO4 units, better known as AM‐6, have been hydrothermally synthesized with different morphologies by controlling the Na/K molar ratio of the initial gel mixtures. The morphology of the AM‐6 materials changed from bulky cube to nanofiber aggregates as the Na/K molar ratio decreased from 1.9 to 0.2. Raman spectroscopy revealed that the VO3? intermediate species plays an important role in the formation of the nanofiber morphology. The orientation of ‐V‐O‐V‐ chains in nanofiber aggregates was examined by confocal polarized micro‐Raman spectroscopy. It was found that these aggregates are assemblies of short ‐V‐O‐V‐ chains perpendicular to the axis of nanofibers. The obtained AM‐6 nanofibers greatly increase the exposed proportion of V? O terminals, and thus improve the catalytic performance.  相似文献   
977.
Self‐assembled poly(N‐methylaniline)–lignosulfonate (PNMA–LS) composite spheres with reactive silver‐ion adsorbability were prepared from N‐methylaniline by using lignosulfonate (LS) as a dispersant. The results show that the PNMA–LS composite consisted of spheres with good size distribution and an average diameter of 1.03–1.27 μm, and the spheres were assembled by their final nanofibers with an average diameter of 19–34 nm. The PNMA–LS composite spheres exhibit excellent silver‐ion adsorption; the maximum adsorption capacity of silver ions is up to 2.16 g g?1 at an adsorption temperature of 308 K. TEM and wide‐angle X‐ray results of the PNMA–LS composite spheres after absorption of silver ions show that silver ions are reduced to silver nanoparticles with a mean diameter of about 11.2 nm through a redox reaction between the PNMA–LS composite and the silver ions. The main adsorption mechanism between the PNMA–LS composite and the silver ions is chelation and redox adsorption. In particular, a ternary PNMA–LS–Ag composite achieved by using the reducing reaction between PNMA–LS composite spheres and silver ions can be used as an antibacterial material with high bactericidal rate of 99.95 and 99.99 % for Escherichia coli and Staphylococcus aureus cells, respectively.  相似文献   
978.
Herein, we present an electrochemically assisted method for the reduction of graphene oxide (GO) and the assembly of polyoxometalate clusters on the reduced GO (rGO) nanosheets for the preparation of nanocomposites. In this method, the Keggin‐type H4SiW12O40 (SiW12) is used as an electrocatalyst. During the reduction process, SiW12 transfers the electrons from the electrode to GO, leading to a deep reduction of GO in which the content of oxygen‐containing groups is decreased to around 5 %. Meanwhile, the strong adsorption effect between the SiW12 clusters and rGO nanosheets induces the spontaneous assembly of SiW12 on rGO in a uniformly dispersed state, forming a porous, powder‐type nanocomposite. More importantly, the nanocomposite shows an enhanced capacity of 275 mAh g?1 as a cathode active material for lithium storage, which is 1.7 times that of the pure SiW12. This enhancement is attributed to the synergistic effect of the conductive rGO support and the well‐dispersed state of the SiW12 clusters, which facilitate the electron transfer and lithium‐ion diffusion, respectively. Considering the facile, mild, and environmentally benign features of this method, it is reasonable as a general route for the incorporation of more types of functional polyoxometalates onto graphene matrices; this may allow the creation of nanocomposites for versatile applications, for example, in the fields of catalysis, electronics, and energy storage.  相似文献   
979.
Site‐specific labeling of proteins with lanthanide ions offers great opportunities for investigating the structure, function, and dynamics of proteins by virtue of the unique properties of lanthanides. Lanthanide‐tagged proteins can be studied by NMR, X‐ray, fluorescence, and EPR spectroscopy. However, the rigidity of a lanthanide tag in labeling of proteins plays a key role in the determination of protein structures and interactions. Pseudocontact shift (PCS) and paramagnetic relaxation enhancement (PRE) are valuable long‐range structure restraints in structural‐biology NMR spectroscopy. Generation of these paramagnetic restraints generally relies on site‐specific tagging of the target proteins with paramagnetic species. To avoid nonspecific interaction between the target protein and paramagnetic tag and achieve reliable paramagnetic effects, the rigidity, stability, and size of lanthanide tag is highly important in paramagnetic labeling of proteins. Here 4′‐mercapto‐2,2′: 6′,2′′‐terpyridine‐6,6′′‐dicarboxylic acid (4MTDA) is introduced as a a rigid paramagnetic and fluorescent tag which can be site‐specifically attached to a protein by formation of a disulfide bond. 4MTDA can be readily immobilized by coordination of the protein side chain to the lanthanide ion. Large PCSs and RDCs were observed for 4MTDA‐tagged proteins in complexes with paramagnetic lanthanide ions. At an excitation wavelength of 340 nm, the complex formed by protein–4MTDA and Tb3+ produces high fluorescence with the main emission at 545 nm. These interesting features of 4MTDA make it a very promising tag that can be exploited in NMR, fluorescence, and EPR spectroscopic studies on protein structure, interaction, and dynamics.  相似文献   
980.
The highly Z‐selective asymmetric conjugate addition of 3‐substituted oxindoles to alkynyl carbonyl compounds has been developed by using scandium complexes of chiral N,N′‐dioxides under mild conditions. The thermodynamically unstable Z‐olefin derivatives were obtained in excellent yields and high enantiomeric and geometric control. The catalyst was also found to be effective in the asymmetric acetylenic substitution reaction of 3‐substituted oxindoles, giving excellent enantioselectivities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号