An interesting halogen‐substituent effect on the organogelation properties of poly(benzyl ether) dendrons is reported. A new class of poly(benzyl ether) dendrons with halo substituents decorating their periphery was synthesized and fully characterized. A systematic study on the gelation abilities, thermotropic behaviors, aggregated microstructures, and mechanical properties of self‐assembled organogels was performed to elucidate the halogen‐substituent effects on their organogelation propensity. It was found that the exact halogen substitutions on the periphery of dendrons exert a profound effect on the organogelation propensity, and dendrons G n ‐Cl (n=2, 3) and G2‐I proved to be highly efficient organogelators. The cooperation of multiple π–π, dispersive halogen, CH–π, and weak C?H ??? X hydrogen‐bonding interactions were found to be the key contributor to forming the self‐assembled gels. Dendritic organogels formed from G n ‐Cl (n=2, 3) in 1,2‐dichloroethane exhibited thixotropic‐responsive properties, and such thixotropic organogels are promising materials for future research and applications. 相似文献
Science China Chemistry - A mild and practical protocol for selectively time-dependent dehydrogenative C-C coupling, as well as tandem coupling-cyclization reaction between indoles or/and other... 相似文献
Side-chain engineering has been demonstrated as an effective method for fine-tuning the optical, electrical, and morphological properties of organic semiconductors toward efficient organic solar cells (OSCs). In this work, three isomeric non-fullerene small molecule acceptors (SMAs), named BTP-4F-T2C8, BTP-4F-T2EH and BTP-4F-T3EH, with linear and branched alkyl chains substituted on the α or β positions of thiophene as the side chains, were synthesized and systematically investigated. The results demonstrate that the size and substitution position of alkyl side chains can greatly affect the electronic properties, molecular packing as well as crystallinity of the SMAs. After blending with donor polymer D18-Cl, the prominent device performance of 18.25% was achieved by the BTP-4F-T3EH-based solar cells, which is higher than those of the BTP-4F-T2EH-based (17.41%) and BTP-4F-T2C8-based (15.92%) ones. The enhanced performance of the BTP-4F-T3EH-based devices is attributed to its stronger crystallinity, higher electron mobility, suppressed biomolecular recombination, and the appropriate intermolecular interaction with the donor polymer. This work reveals that the side chain isomerization strategy can be a practical way in tuning the molecular packing and blend morphology for improving the performance of organic solar cells.