首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
化学   27篇
力学   1篇
数学   5篇
物理学   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2007年   1篇
  2006年   3篇
  2002年   1篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1995年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1983年   1篇
  1978年   1篇
  1971年   1篇
排序方式: 共有35条查询结果,搜索用时 104 毫秒
11.
Syndiotactic polystyrene (sPS) forms a clathrate phase with a variety of compounds. Not only rigid molecules but also flexible molecules can be stored in the cavities of the clathrate phase. To clarify the adjustment mechanism of a flexible guest molecule to the sPS clathrate system, the host and guest structures were investigated by means of solid-state 13C NMR and Raman spectroscopy, and X-ray diffractometry for the sPS clathrates with a series of n-alkanes from n-hexane to n-decane. Although the 010 spacing of the host sPS lattice expanded slightly on going from n-hexane to n-heptane, it decreased markedly at n-octane and then increased gradually with the chain length of guest n-alkane. The conformational change of guest n-alkane molecules was involved in this anomalous change in the 010 spacing. Majority of the n-hexane and n-heptane molecules took extended chain structures in the clathrates, whereas all longer n-alkanes took bent chain structures. The mean-square displacement of hydrogen atoms in the clathrates was estimated by quasielastic neutron scattering experiments. It was confirmed that the host lattice contraction suppressed thermal motion of the clathrate system.  相似文献   
12.
Pure and KOH (x=1.3×10?3)-doped argon clathrate hydrates were synthesized in an adiabatic high-pressure calorimetric cell from one mole of water and 200 MPa of Ar gas. The heat capacities of the hydrates were measured from 12 to 130 K. No anomaly was found in the pure sample but a glass transition considered to be related to a proton-configurational mode of the host hydrogen-bonded lattice was observed for the first time at 55 K in the doped sample. Comparison with the results on pure and KOH-doped tetrahydrofuran clathrate hydrates indicated that the thermodynamic properties of a hydrogen-bonded system depend on the kind of guest molecule. The heat capacity of argon in the hydrate cages was adequately analyzed with the one-dimensional Pöschl-Teller potential as used in the Ar-β-quinol clathrate and the addivity of heat capacities of the guest and host was shown to be valid in the temperature range 12–130 K.  相似文献   
13.
Glass transition phenomena of four binary systems composed of simple hydrocarbons were studied by means of the differential thermal analysis (DTA). For all the systems, a definite glass transition was observed and a monotonous relation between the glass transition temperature (T g) and composition (x) was obtained. The composition dependence ofT g was analyzed in terms of the entropy theory based on the regular solution model. The theoretical prediction could not reproduce our results other than (1-butene)x(1-pentene)1?x system. This disagreement is considered to be due to deviations of the present systems from the regular solution, and the accompanying excess configurational entropy Sc E was estimated as a function of composition. Extraordinarily large values of S c E ? were obtained for (propene)x(propane)1?x and (propene)inx(1-pentene)1?x systems.  相似文献   
14.
15.
The heat capacity of structure I ethylene oxide clathrate hydrate EO-6.86 H2O was measured in the temperature range 6–300 K with an adiabatic calorimeter. The temperature and enthalpy of congruent melting were determined to be (284.11 ± 0.02) K and 48.26 kJ mol–1, respectively. A glass transition related to the proton configurational mode in the hydrogen-bonded host was observed around 90 K. This glass transition was similar to the one observed previously for the structure II tetrahydrofuran hydrate but showed a wider distribution of relaxation times. The anomalous heat capacity and activation enthalpy associated with the glass transition were almost the same as those for THF-hydrate.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.Author for correspondence.  相似文献   
16.
Heat capacities of structure I and II trimethylene oxide (TMO) clathrate hydrates doped with small amount of potassium hydroxide (x=1.8×10–4 to water) were measured by an adiabatic calorimeter in the temperature range 11–300 K. In the str. I hydrate (TMO·7.67H2O), a glass transition and a higher order phase transition were observed at 60 K and 107.9 K, respectively. The glass transition was considered to be due to the freezing of the reorientation of the host water molecules, which occurred around 85 K in the pure sample and was lowered owing to the acceleration effect of KOH. The relaxation time of the water reorientation and its distribution were estimated and compared with those of other clathrate hydrates. The phase transition was due to the orientational ordering of the guest TMO molecules accommodated in the cages formed by water molecules. The transition was of the higher order and the transition entropy was 1.88 J·K–1(TMO-mol)–1, which indicated that at least 75% of orientational disorder was remaining in the low temperature phase. In the str. II hydrates (TMO·17H2O), only one first-order phase transition appeared at 34.5 K. This transition was considered to be related to the orientational ordering of the water molecules as in the case of the KOH-doped acetone and tetrahydrofuran (THF) hydrates. The transition entropy was 2.36 JK–1(H2O-mol)–1, which is similar to those observed in the acetone and THF hydrates. The relations of the transition temperature and entropy to the guest properties (size and dipole moment) were discussed.Contribution No 57 from the Microcalorimetry Research CenterThe authors would like to express their sincere thanks to the Nissan Science Foundation for their financial support.  相似文献   
17.
18.
19.
Abstract

Heat capacities and complex dielectric permittivities of three clathrate hydrates of type II, encaging tetrahydrofuran (THF), acetone (Ac), and trimethylene oxide (TMO), were measured at low temperatures. The heat capacity measurement was done in the temperature range 13–300 K by using an adiabatic calorimeter with a built-in cryorefrigerator. The permittivities were measured in the temperature range 20–260 K and in the frequency range 20 Hz-1 MHz. For pure samples, with a glass transition due to freezing out of water, reorientational motion of the host lattice was observed calorimetrically at 85 K for THF and at 90 K for Ac hydrates, respectively. Spontaneous temperature drift rates of the calorimetric cell were measured under adiabatic conditions to derive the characteristic time for enthalpy relaxation. The enthalpy relaxation times thus derived were well correlated in an Arrhenius plot with the dielectric relaxation times derived from the dielectric relaxation of orientation polarization. The situation is the same as hexagonal ice which has a similar four co-ordinated hydrogen-bonded network.  相似文献   
20.
An experimental set-up is described in which the temperature of a piece of rubber is measured with thin wire thermocouples. It measures and records the temperature change of the rubber as it heats and cools in response to elongation and contraction. This mechano-caloric effect arising from the entropy elasticity of rubber represents a reversible thermal process in clear distinction from most of other heat effects encountered in our daily experience where the irreversibility is inevitably involved. The demonstration experiment has been proved useful in elementary thermodynamic courses for introducing the entropy concept. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号