首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   10篇
  国内免费   1篇
化学   189篇
晶体学   3篇
力学   3篇
数学   13篇
物理学   42篇
  2021年   2篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   6篇
  2012年   5篇
  2011年   11篇
  2010年   4篇
  2009年   5篇
  2007年   6篇
  2006年   8篇
  2005年   17篇
  2004年   8篇
  2003年   8篇
  2002年   12篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   8篇
  1995年   3篇
  1993年   5篇
  1992年   9篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   9篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   6篇
  1978年   9篇
  1977年   3篇
  1974年   7篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1968年   2篇
  1931年   1篇
  1929年   1篇
  1928年   2篇
排序方式: 共有250条查询结果,搜索用时 15 毫秒
81.
The electron-phonon coupling constants [l(B1u(HOMO-->LUMO))] in the photoinduced excited electronic states in fluoroacenes are estimated and compared with those in the monoanions (l(LUMO)) and cations (l(HOMO)). The l(B1u(HOMO-->LUMO)) values are much larger than the l(LUMO) and l(HOMO) values in fluoroacenes. Furthermore, the Coulomb pseudopotential mu* values for the excited electronic states are estimated to be smaller than those for the monoanions and cations. The complete phase patterns difference between the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) is the main reason why the electron-phonon coupling constants and the mu* values are larger and smaller, respectively, in the photoinduced excited electronic states than in the monoanions and cations. The possible electron pairing and Bose-Einstein condensation in the excited electronic states of fluoroacenes are discussed. Because of larger electron-phonon coupling constants and smaller mu* values in the excited electronic states than in the charged states, the conditions under which the electron-electron interactions become attractive can be more easily realized, in principle, in the excited electronic states than in the charged states in fluoroacenes. The l(B1u(HOMO-->LUMO)) values hardly change by H-F substitution, even though the l(LUMO) and l(HOMO) values significantly increase by H-F substitution in acenes. Antibonding interactions between carbon and fluorine atoms in the HOMO and LUMO are the main reason why the l(B1u(HOMO-->LUMO)) values hardly change by H-F substitution in acenes.  相似文献   
82.
83.
A non-empirical tight-binding LCAO SCF MO treatment of one-dimensional molecular crystals based on the SCF perturbation theory is presented. The simpler version of this method at the level of the CNDO/2 approximation is also given.  相似文献   
84.
The charge distributions in octahedral PF?6, AsF?6, and SbF?6 anions are studied by means of the ab initio molecular orbital method. We find that the central P, As, and Sb atoms are all positively charged in these anions, while F atoms negatively charged, the order of the positive charge being Sb > P > As.  相似文献   
85.
A fundamental reduction reaction, nitrobenzene to aniline in SnCl2 and hydrochloric acid, was investigated by density functional theory (DFT) calculations. First, the change of SnCl2 → SnCl42? → Cl4SnH? was discussed, and the reaction path of SnCl42? + H3O+ → Cl4SnH? + H2O was obtained. Starting from nitrobenzene, six elementary processes were found so as to arrive at the protonated aniline. The hydride ion from Cl4SnH? is connected always to the cationic nitrogen, and the proton is always to oxygens. An intermediate Ph?N+H2OH was obtained, which is isomerized to the para O?H adduct protonated imine via the Bamberger rearrangement. This species may undergo the H? acceptance at the sp2 N+H2 center. In the nitrobenzene reduction, the proton enhances the electrophilicity of the nitrogen center, which makes the hydride shift ready. N?H bonds are formed, and N?O bonds are cleaved both by the proton attach and subsequent H2O elimination and by the formal [1,5] OH shift. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
86.
Anionic polymerization of N-ethylmaleimide (N-EMI) was carried out with potassium t-butoxide, lithium t-butoxide, n-butyllithium, and ethylmagnesium bromide as initiators in THF and in toluene. An almost quantitative yield of poly(N-EMI) was obtained with potassium t-butoxide as initiator in THF in a wide range of polymerization temperatures. Initiators possessing lithium as counter cation produced poly(N-EMI) in slightly lower yields and ethylmagnesium bromide gave the polymer only in less than 35% yield in THF. As a polymerization reaction solvent, THF was preferable for the polymerization of N-EMI compared with toluene with respect to polymer yields. Poly(N-EMI) obtained with anionic initiators exerted unimodal molecular weight distribution. From 1H- and 13C-NMR spectra of poly(N-EMI) anionic polymerization of N-EMI with potassium t-butoxide was revealed to proceed at carbon–carbon double bond. t-Butoxide system was found to have a “living” polymerization character, i.e., the observed average degree of polymerization was in good agreement with the one calculated from the initial molar ratio of N-EMI/initiator and the yield of polymer.  相似文献   
87.
[reaction: see text] RB3LYP calculations were performed on the Beckman rearrangement by the use of three substrates, acetone oxime (1), acetophenone oxime (2), and cyclohexanone oxime (3). Acidic solvents were modeled by H+ (CH3COOH)3 and H3O+ (H2O)6, and reaction paths were determined precisely. For 1, a two-step process involving a sigma-type cationic complex was obtained. For 2, a three-step process with pi- and sigma-type complexes was found in H+ (CH3COOH)3 and a two-step process involving a sigma-type cationic complex was obtained in H3O+ (H2O)6. However, for 3, a concerted process without pi and sigma complexes was calculated, which leads to the product, epsilon-caprolactam. Three different mechanisms were explained in terms of FMO theory.  相似文献   
88.
The mechanism of stereoselective addition of Grignard reagents to carbonyl compounds has been investigated using B3LYP density functional theory calculations. The study of the reaction of methylmagnesium chloride and formaldehyde in dimethyl ether revealed a new reaction path involving carbonyl compound coordination to magnesium atoms in a dimeric Grignard reagent. The structure of the transition state for the addition step shows that an interaction between a vicinal-magnesium bonding alkyl group and C=O causes the C-C bond formation. The simplified mechanism shown by this model is in accord with the aggregation nature of Grignard reagents and their high reactivities toward carbonyl compounds. Concerted and four-centered formation of strong O-Mg and C-C bonds was suggested as a polar mechanism. When the alkyl group is bulky, C-C bond formation is blocked and the Mg-O bond formation takes precedence. A diradical is formed with the odd spins localized on the alkyl group and carbonyl moiety. Diradical formation and its recombination were suggested to be a single electron transfer (SET) process. The criteria for the concerted polar and stepwise SET processes were discussed in terms of precursor geometries and relative energies.  相似文献   
89.
The electronic structure and the magnetic properties of the ferromagnetic organic polymer poly (m-phenylcarbene ) was studied by application of the unrestricted Hartree-Fock (UHF) crystal orbital (CO) method. In comparison with the restricted Hartree-Fock (RHF) result, it was revealed that the ferromagnetic state is more stable than the non-magnetic state. According to a detailed energy analysis, the stability originates from both the triplet spin configuration at the carbene centre and the delocalized π spins in an antiferromagnetic fashion over the phenyl ring.  相似文献   
90.
Density functional theory (DFT) calculations were made on the hydrolysis of hydantoin (2,4-imidazolidinedione). In the neutral hydrolysis, reacting systems composed of hydantoin and (H2O)n with n = 1+3, 2+3, 3+3, and 4+3 were adopted. Three water molecules (“+3”) participate in the in-plane hydrogen-bond circuit, and the n–3 = 1, 2, 3 or 4 water cluster works for the out-of-plane nucleophilic attack onto the carbonyl carbon of hydantoin. Transition states (TSs) involving bond interchanges prompted by proton transfers were determined. The reaction path with n = 3+3 containing N-carbamoyl glycine, N-carboxy glycine and three tetrahedral intermediates was found to be most likely. In the acid-catalyzed hydrolysis, a reacting system composed of hydantoin and H3O+(H2O)7 was employed. Ten TSs and nine intermediates were obtained. N-carbamoyl glycine and N-carboxy glycine were confirmed to be detectable stable species. The product consists of glycine, carbonic acid (not CO2), NH4+, and (H2O)5. It has the exothermic energy, whereas the product in the neutral hydrolysis is of the endothermic one for all n values. For both neutral (n = 3+3) and acid-catalyzed hydrolyses, the rate-determining steps were calculated to be for formation of the tetrahedral intermediate, HOOC-CH2-NH-C(OH)2NH2. The pattern of proton transfers along hydrogen bonds was carefully investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号