首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   9篇
化学   162篇
力学   2篇
数学   5篇
物理学   6篇
  2023年   2篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   8篇
  2017年   6篇
  2016年   11篇
  2015年   10篇
  2014年   11篇
  2013年   14篇
  2012年   23篇
  2011年   19篇
  2010年   10篇
  2009年   10篇
  2008年   4篇
  2007年   6篇
  2006年   6篇
  2005年   4篇
  2004年   8篇
  2003年   2篇
  2002年   4篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1987年   1篇
排序方式: 共有175条查询结果,搜索用时 10 毫秒
31.
In the present work, an automated on-line electrochemically controlled in-tube solid-phase microextraction (EC-in-tube SPME) coupled with HPLC-UV was developed for the selective extraction and preconcentration of indomethacin as a model analyte in biological samples. Applying an electrical potential can improve the extraction efficiency and provide more convenient manipulation of different properties of the extraction system including selectivity, clean-up, rate, and efficiency. For more enhancement of the selectivity and applicability of this method, a novel molecularly imprinted polymer coated tube was prepared and applied for extraction of indomethacin. For this purpose, nanostructured copolymer coating consisting of polypyrrole doped with ethylene glycol dimethacrylate was prepared on the inner surface of a stainless-steel tube by electrochemical synthesis. The characteristics and application of the tubes were investigated. Electron microscopy provided a cross linked porous surface and the average thickness of the MIP coating was 45 μm. Compared with the non-imprinted polymer coated tubes, the special selectivity for indomethacin was discovered with the molecularly imprinted coated tube. Moreover, stable and reproducible responses were obtained without being considerably influenced by interferences commonly existing in biological samples. Under the optimal conditions, the limits of detection were in the range of 0.07–2.0 μg L−1 in different matrices. This method showed good linearity for indomethacin in the range of 0.1–200 μg L−1, with coefficients of determination better than 0.996. The inter- and intra-assay precisions (RSD%, n = 3) were respectively in the range of 3.5–8.4% and 2.3–7.6% at three concentration levels of 7, 70 and 150 μg L−1. The results showed that the proposed method can be successfully applied for selective analysis of indomethacin in biological samples.  相似文献   
32.
In this study, two‐phase hollow‐fiber liquid‐phase microextraction and three‐phase hollow‐fiber liquid‐phase microextraction based on two immiscible organic solvents were compared for extraction of oxazepam and Lorazepam. Separations were performed on a liquid chromatography with mass spectrometry instrument. Under optimal conditions, three‐phase hollow‐fiber liquid‐phase microextraction based on two immiscible organic solvents has a better extraction efficiency. In a urine sample, for three‐phase hollow fiber liquid‐phase microextraction based on two immiscible organic solvents, the calibration curves were found to be linear in the range of 0.6–200 and 0.9–200 μg L?1 and the limits of detection were 0.2 and 0.3 μg L?1 for oxazepam and lorazepam, respectively. For two‐phase hollow fiber liquid‐phase microextraction, the calibration curves were found to be linear in the range of 1–200 and 1.5–200 μg L?1 and the limits of detection were 0.3 and 0.5 μg L?1 for oxazepam and lorazepam, respectively. In a urine sample, for three‐phase hollow‐fiber‐based liquid‐phase microextraction based on two immiscible organic solvents, relative standard deviations in the range of 4.2–4.5% and preconcentration factors in the range of 70–180 were obtained for oxazepam and lorazepam, respectively. Also for the two‐phase hollow‐fiber liquid‐phase microextraction, preconcentration factors in the range of 101–257 were obtained for oxazepam and lorazepam, respectively.  相似文献   
33.
The applicability of hollow fiber-based liquid phase microextraction (HF-LPME) was evaluated for the extraction and preconcentration of three antidepressant drugs (amitriptyline, imipramine and sertraline) prior to their determination by HPLC-UV. The target drugs were extracted from 11.0 mL of aqueous solution with pH 12.0 (source phase) into an organic extracting solvent (n-dodecane) impregnated in the pores of a hollow fiber and finally back extracted into 24 μL of aqueous solution located inside the lumen of the hollow fiber and adjusted to pH 2.1 using 0.1 M of H3PO4 (receiving phase). The extraction was performed due to pH gradient between the inside and outside of the hollow fiber membrane. In order to obtain high extraction efficiency, the parameters affecting the HF-LPME including pH of the source and receiving phases, the type of organic phase, ionic strength and volume of the source phase, stirring rate and extraction time were studied and optimized. Under the optimized conditions, enrichment factors up to 300 were achieved and the relative standard deviation (R.S.D.%) of the method was in the range of 2-12%. The calibration curves were obtained in the range of 5-500 μg L−1 with reasonable linearity (R2 > 0.998) and the limits of detection (LODs) ranged between 0.5 and 0.7 μg L−1 (based on S/N = 3). Finally, the applicability of the proposed method was evaluated by extraction and determination of the drugs in urine, plasma and tap water samples. The results indicated that hollow fiber microextraction method has excellent clean-up and high-preconcentration factor and can be served as a simple and sensitive method for monitoring of antidepressant drugs in the biological samples.  相似文献   
34.
35.
The effects of manganese oxide or ceria promoters on the performance of Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) are reported. The OCM reaction was performed in a continuous-flow microreactor at 800 ℃, atmospheric pressure and under GHSV = 13200 ml gC-1at h-1. Catalysts were characterized by in situ conductivity measurement, FT-IR spectroscopy, XRD, SEM and temperature programmed reduction analysis. Manganese oxide promoted Na2WO4/SiO2 is considered as one of the active and selective ca...  相似文献   
36.
An efficient method for the preparation of 5-substituted 1H-tetrazole derivatives is reported using FeCl3-SiO2 as an effective heterogeneous catalyst. This method has the advantages of high yields, simple methodology, and easy work-up. The catalyst can be recovered by simple filtration and reused delivering good yields.  相似文献   
37.
A supramolecular solvent consisting of reverse micelles of decanoic acid, dispersed in a continuous phase of tetrahydrofuran:water, was proposed as an efficient microextraction technique for extraction of selected chlorophenoxy acid herbicides from water samples prior to high-performance liquid chromatography UV determination. The disperser solvent (1.0 mL tetrahydrofuran) containing 20 mg decanoic acid was rapidly injected into 10.0 mL of water sample. After centrifugation, the reverse micelle-rich phase (25 ± 0.5 μL) was floated at top of the home-designed centrifuge tube. The solvent was collected and 20 μL of it was injected into high-performance liquid chromatography for analysis. The results showed that the in situ solvent formation and extraction process can be completed in a few seconds. Under the optimal conditions, limits of detection of the method for 4-chloro-2-methylphenoxyacetic acid and 2,4-dichlorophenoxyacetic acid were in the range of 0.5-0.8 μg L(-1) and the repeatability of the proposed method, expressed as relative standard deviation, varied in the range of 2.5-3.2%. Linearity was found to be in the range of 1-200 μg L(-1) and the preconcentration factors were between 148 and 157. The mean percentage recoveries exceeded 92.0% for all the spiking levels in real water samples.  相似文献   
38.
39.
Biomorphic porous ZnO nanostructures were successfully synthesized via an aqueous sol–gel soaking process using pieces of apple flesh and skin as templates and employed for glucose direct electrochemical biosensor. The structure and morphology of ZnO nanostructures were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). By modifying glassy carbon electrode with the biomorphic ZnO nanostructures and Nafion, two glucose biosensors were constructed and their direct electrochemistry of glucose oxidase (GOD) was successfully investigated by cyclic voltammetry (CV). The biomorphic porous ZnO nanostructures using apple skin template (S-ZnO) were more effective in facilitating the electron transfer of immobilized GOD than that of using flesh apple template (F-ZnO). This may be a result of the unique morphology and smaller average crystallite size of the S-ZnO nanostructure. GOD immobilized on Nafion-porous S-ZnO nanostructure composite display direct, reversible, and surface-controlled redox reaction with a detection limit of 10 μM, a response time of 7 s, high sensitivity of 23.4 μA/mM cm2 and a fast heterogeneous electron transfer rate with a rate constant (ks) of 3.9 s?1. It was found that S-ZnO significantly has improved the direct electron transfer between GOD and glassy carbon electrode with good stability and reproducibility.  相似文献   
40.
Hollow fiber liquid-phase microextraction (HF-LPME) offers an efficient alternative to classical techniques for sample preparation and preconcentration. Features include high selectivity, good enrichment factors, and improved possibilities for automation. HP-LPME relies on the extraction of target analytes from aqueous samples into a supported liquid membrane (SLM) sustained in the pores of the wall of a porous hollow fiber, and then into an acceptor phase (that can be aqueous or organic) in the lumen of the hollow fiber. After extraction, the acceptor solution is directly subjected to a chemical analysis. HP-LPME can be performed in either the 2- or 3-phases mode. In the 2-phase mode, the organic solvent is present both in the porous wall and inside the lumen of the hollow fiber. In the 3-phase mode, the acceptor phase can be aqueous and this results in a conventional 3-phase system compatible with HPLC or capillary electrophoresis. Alternatively, the acceptor solution is organic and this represents a 3-phase extraction system with two immiscible organic solvents that is compatible with all common analytical instruments. In HP-LPME methods based on the use of SLMs, the mass transfer occurs by passive diffusion, and high extraction yields as well as efficient extraction kinetics are obtained by applying a pH gradient. In addition, active transport can be performed by using carrier or applying an electrical potential across the SLM. Due to high analyte preconcentration, excellent sample clean-up, and low consumption of organic solvent, HF-LPME has a large application potential in areas such as drug analysis and environmental monitoring. This review focuses on the fundamentals of extraction principles, technical implementations, and future trends in HF-LPME.
Figure
Schematic diagram of three-phase HF-LPME based of two immiscible organic solvent  相似文献   
[首页] « 上一页 [1] [2] [3] 4 [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号