排序方式: 共有175条查询结果,搜索用时 9 毫秒
101.
Extraction and determination of crown ethers from water samples using a membrane disk and gas chromatography 总被引:2,自引:0,他引:2
A method for rapid extraction and determination of some crown ethers in aqueous matrices using octadecyl-bonded silica membrane disks and gas chromatography is presented. Extraction efficiency and the influence of vacuum pressure. pH, and type and least amount of eluting solvent used to extract the crown ethers from the membrane disks were evaluated. Extraction efficiencies > 95% were obtained for benzo-15-crown-5, benzo-18-crown-6 and dicyclohexyl-18-crown-6 using 5 ml of acetonitrile as eluting solvent. The limit of detection of the proposed method for the determination of the crown ethers is reported. 相似文献
102.
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-flame ionization detector (GC-FID) was developed for preconcentration and determination of some nitroaromatic compounds in wastewater samples. The effects of different variables on the extraction efficiency were studied simultaneously using experimental design. The variables of interest in the DLLME process were extraction and disperser solvent volumes, salt effect, sample volume, extraction temperature and extraction time. A Plackett-Burman design was performed for screening of variables in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by using a central composite design (CCD) and the response surface equations were derived. The optimum experimental conditions found from this statistical evaluation included: sample volume, 9 mL; extraction solvent (CCl4) volume, 20 μL; disperser solvent (methanol) volume, 0.75 mL; sodium chloride concentration, 3% (w/v); extraction temperature, 20 °C and extraction time, 2 min. Under the optimum conditions, the preconcentration factors were between 202 and 314. Limit of detections (LODs) ranged from 0.09 μg L−1 (for 2-nitrotoluene) to 0.5 μg L−1 (for 2,4-dinitrotoluene). Linear dynamic ranges (LDRs) of 0.5-300 and 1-400 μg L−1 were obtained for mononitrotoluenes (MNTs) and dinitrotoluenes (DNTs), respectively. Performance of the present method was evaluated for extraction and determination of nitroaromatic compounds in wastewater samples in the range of microgram per liter and satisfactory results were obtained (RSDs < 10.1%). 相似文献
103.
104.
105.
An efficient method for preparation of arylaminotetrazoles is reported using natrolite zeolite as a natural catalyst. Generally, isomer of 5-arylamino-1H-tetrazole can be obtained from arylcyanamides carrying electron-withdrawing substituent on aryl ring and as the electropositivity of substituent is increased, the product is shifted toward the isomer of 1-aryl-5-amino-1H-tetrazole. This method has the advantages of high yields, simple methodology, short reaction times and easy work-up. The catalyst can be recovered by simple filtration and reused in good yields. 相似文献
106.
Morteza Maghrebi Yadollah Mortazavi Subodh Mhaisalkar 《Applied Surface Science》2009,255(16):7243-7250
We report a detailed longitudinal and depth profiles of multi-wall carbon nanotubes (CNTs) arrays synthesized using xylene and ferrocene in a floating catalyst reactor. Point to point analyses of the CNTs grown in a “growth window” with CNTs arrays longer than 0.5 mm were performed using optical microscopy, Raman spectroscopy, FESEM, high-resolution TGA/DTA, and TEM techniques. The heights of the CNTs arrays show a maximum at a mid point of the growth window, while a reverse trend of minimum is observed for iron-to-CNTs atomic ratios. The ratio of amorphous carbon to CNTs sharply increases along the growth window and from the bottom to top of CNTs arrays. The CNTs diameter also increases along the growth window, due to deposition of the amorphous carbon, which can be almost removed by temperature programmed oxidation up to around 500 °C. A base growth mechanism, the variations of catalyst content, residence time and temperature profile along the growth window, the adsorption and decomposition of polycyclic aromatic hydrocarbons to amorphous carbon, and a limited diffusion of hydrocarbon species through the arrays covered by excessive amorphous carbon may explain the results. 相似文献
107.
Parisa Rahimkhani Yadollah Ordokhani 《Numerical Methods for Partial Differential Equations》2019,35(1):34-59
In this paper, an efficient and accurate numerical method is presented for solving two types of fractional partial differential equations. The fractional derivative is described in the Caputo sense. Our approach is based on Bernoulli wavelets collocation techniques together with the fractional integral operator, described in the Riemann‐Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations, which greatly simplifies the problem. By using Newton's iterative method, this system is solved and the solution of fractional partial differential equations is achieved. Some results concerning the error analysis are obtained. The validity and applicability of the method are demonstrated by solving four numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions much easier. 相似文献
108.
We report on a method for the extraction of the lanthanide ions La(III), Sm(III), Nd(III) and Pr(III) using a carbon-ferrite magnetic nanocomposite as a new adsorbent, and their determination via flow injection ICP-OES. The lanthanide ions were converted into their complexes with 4-(2-pyridylazo)resorcinol, and these were adsorbed onto the nanocomposite. Fractional factorial design and central composite design were applied to optimize the extraction efficiencies to result in preconcentration factors in the range of 141–246. Linear calibration plots were obtained, the limits of detection (at S/N?=?3) are between 0.5 and 10 μg?L?1, and the intra-day precisions (n?=?3) range from 3.1 to 12.8 %. The method was successfully applied to a certified reference material. Figure
Superparamagnetic activated carbon based nanocomposite was synthesized and applied for extraction and determination of some rare earth elements in water samples 相似文献
109.
A new, efficient, and environmental friendly hollow fiber liquid phase microextraction (HF-LPME) method based on supramolecular solvents was developed for extraction of five benzodiazepine drugs. The supramolecular solvent was produced from coacervation of decanoic acid aqueous vesicles in the presence of tetrabutylammonium (Bu4N+). In this work, benzodiazepines were extracted from aqueous samples into a supramolecular solvent impregnated in the wall pores and also filled inside the porous polypropylene hollow fiber membrane. The driving forces for the extraction were hydrophobic, hydrogen bonding, and π-cation interactions between the analytes and the vesicular aggregates. High-performance liquid chromatography with photodiode array detection (HPLC-DAD) was applied for separation and determination of the drugs. Several parameters affecting the extraction efficiency including pH, hollow fiber length, ionic strength, stirring rate, and extraction time were investigated and optimized. Under the optimal conditions, the preconcentration factors were obtained in the range of 112–198. Linearity of the method was determined to be in the range of 1.0–200.0 μg L−1 for diazepam and 2.0–200.0 μg L−1 for other analytes with coefficient of determination (R2) ranging from 0.9954 to 0.9993. The limits of detection for the target benzodiazepines were in the range of 0.5–0.7 μg L−1. The method was successfully applied for extraction and determination of the drugs in water, fruit juice, plasma and urine samples and relative recoveries of the compounds studied were in the range of 90.0–98.8%. 相似文献
110.
An emulsification liquid phase microextraction followed by on-line phase separation coupled to high performance liquid chromatography (HPLC) is introduced based on a novel idea for the separation of dispersed organic phase from aqueous phase. In this method, the dispersed organic extraction phase was filtered using an in-line filter and it was separated from the water sample. The new approach is simple and, in addition to improving some limitations of the conventional emulsification liquid phase microextraction, eliminates the need for centrifugation in the phase separation step. 相似文献