首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   3篇
化学   69篇
力学   6篇
数学   18篇
物理学   22篇
  2023年   4篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   7篇
  2018年   7篇
  2017年   5篇
  2016年   9篇
  2015年   5篇
  2014年   6篇
  2013年   4篇
  2012年   15篇
  2011年   8篇
  2010年   6篇
  2009年   7篇
  2008年   8篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
61.
Metal carbides and oxycarbides have recently gained considerable interest due to their (electro)catalytic properties that differ from those of transition metals and that have potential to outperform them as well. The stability of zirconium oxycarbide nanopowders (ZrO0.31C0.69), synthesized via a hybrid solid-liquid route, is investigated in different gas atmospheres from room temperature to 800 °C by using in-situ X-ray diffraction and in-situ electrical impedance spectroscopy. To feature the properties of a structurally stable Zr oxycarbide with high oxygen content, a stoichiometry of ZrO0.31C0.69 has been selected. ZrO0.31C0.69 is stable in reducing gases with only minor amounts of tetragonal ZrO2 being formed at high temperatures, whereas it decomposes in CO2 and O2 gas atmosphere. From online differential electrochemical mass spectrometry measurements, the hydrogen evolution reaction (HER) onset potential is determined at −0.4 VRHE. CO2 formation is detected at potentials as positive as 1.9 VRHE as ZrO0.31C0.69 decomposition product, and oxygen is anodically formed at 2.5 VRHE, which shows the high electrochemical stability of this material in acidic electrolyte. This peopwery makes the material suited for electrocatalytic reactions at anodic potentials, such as CO and alcohol oxidation reactions, in general.  相似文献   
62.
A one-dimensional premixed flame model (PREMIX) and schemes resulting from the merging of validated kinetic schemes for the oxidation of the components of the present mixtures (benzene and ethanol) were used to investigate the effect of oxygenated additives on aromatic species, which are known to be soot precursors, in fuel-rich benzene combustion. The specific flames were low-pressure (45 mbar), laminar, premixed flames at an equivalence ratio of 2.0. The blended fuels were formed by incrementally adding 4% wt of oxygen (ethanol) to the neat benzene flame and by keeping the inert mole fraction (argon) and the equivalence ratio constants. Special emphasis was directed toward the causes for the concentration-dependent influence of the blends on the amount of polycyclic aromatic hydrocarbons (PAHs) formed. The effects of oxygenate addition to the benzene base flame were seen to result in interesting differences, especially regarding trends to form PAH. The modeling results indicated that the concentration of acetylene and propargyl radicals, the main PAH precursors, as well as the PAH amounts were lower in the flame of the ethanol-benzene fuel mixture than in the pure benzene flame and that all of the formed PAHs were issued from the phenyl radical. Finally, the modeling results provided evidence that the PAH reduction was a result of simply replacing "sooting" benzene with "nonsooting" ethanol without influencing the combustion chemistry of the benzene.  相似文献   
63.
We introduce a spin chain based on finite-dimensional spin-1/2 SU(2) representations but with a non-Hermitian "Hamiltonian" and show, using mostly analytical techniques, that it is described at low energies by the SL(2,R)/U(1) Euclidian black hole conformal field theory. This identification goes beyond the appearance of a noncompact spectrum; we are also able to determine the density of states, and show that it agrees with the formulas in [J. Maldacena, H. Ooguri, and J. Son, J. Math. Phys. (N.Y.) 42, 2961 (2001)] and [A. Hanany, N. Prezas, and J. Troost, J. High Energy Phys. 04 (2002) 014], hence providing a direct "physical measurement" of the associated reflection amplitude.  相似文献   
64.
Hydrogenated amorphous SiC films (a-Si1−xCx:H) were prepared by dc magnetron sputtering technique on p-type Si(1 0 0) and corning 9075 substrates at low temperature, by using 32 sprigs of silicon carbide (6H-SiC). The deposited a-Si1−xCx:H film was realized under a mixture of argon and hydrogen gases. The a-Si1−xCx:H films have been investigated by scanning electronic microscopy equipped with an EDS system (SEM-EDS), X-ray diffraction (XRD), secondary ions mass spectrometry (SIMS), Fourier transform infrared spectroscopy (FTIR), UV-vis-IR spectrophotometry, and photoluminescence (PL). XRD results showed that the deposited film was amorphous with a structure as a-Si0.80C0.20:H corresponding to 20 at.% carbon. The photoluminescence response of the samples was observed in the visible range at room temperature with two peaks centred at 463 nm (2.68 eV) and 542 nm (2.29 eV). In addition, the dependence of photoluminescence behaviour on film thickness for a certain carbon composition in hydrogenated amorphous SiC films (a-Si1−xCx:H) has been investigated.  相似文献   
65.
We demonstrate that the coupling system of negatively capped CdSe/ZnS QDs with an oxidized Cytochrome c (Cyt c) is capable of the fluorescent imaging of a superoxide radical (O(2)˙?) with high sensitivity and specificity in living cells, without interference from other Reactive Oxygen Species (ROS) or relevant intracellular components.  相似文献   
66.
Numerical simulation of chemical reactions inside an isolated spherical bubble of oxygen has been performed for various ambient bubble radii at different frequencies and acoustic amplitudes to study the effects of these two parameters on the range of ambient radius for an active bubble in sonochemical reactions. The employed model combines the dynamic of bubble collapse with the chemical kinetics of single cavitation bubble. Results from this model were compared with some experimental results presented in the literature and good apparent trends between them were observed. The numerical calculations of this study showed that there always exists an optimal ambient bubble radius at which the production of oxidizing species at the end of the bubble collapse attained their upper limit. It was shown that the range of ambient radius for an active bubble increased with increasing acoustic amplitude and decreased with increasing ultrasound frequency. The optimal ambient radius decreased with increasing frequency. Analysis of curves showing optimal ambient radius versus acoustic amplitude for different ultrasonic frequencies indicated that for 200 and 300 kHz, the optimal ambient radius increased linearly with increasing acoustic amplitude up to 3 atm. However, slight minima of optimal radius were observed for the curves obtained at 500 and 1000 kHz.  相似文献   
67.

Background  

Insulin stimulates exocytosis of GLUT4 from an intracellular store to the cell surface of fat and muscle cells. Fusion of GLUT4-containing vesicles with the plasma membrane requires the SNARE proteins Syntaxin 4, VAMP2 and the regulatory Sec1/Munc18 protein, Munc18c. Syntaxin 4 and Munc18c form a complex that is disrupted upon insulin treatment of adipocytes. Munc18c is tyrosine phosphorylated in response to insulin in these cells. Here, we directly test the hypothesis that tyrosine phosphorylation of Munc18c is responsible for the observed insulin-dependent abrogation of binding between Munc18c and Syntaxin 4.  相似文献   
68.
69.
70.
Strategies to compensate material fatigue are among the most challenging issues, being most prominently addressed by the use of nano‐ and microscaled fillers, or via new chemical concepts such as self‐healing materials. A capsule‐based self‐healing material is reported, where the adverse effect of reduced tensile strength due to the embedded capsules is counterbalanced by a graphene‐based filler, the latter additionally acting as a catalyst for the self‐healing reaction. The concept is based on “click”‐based chemistry, a universal methodology to efficiently link components at ambient reaction conditions, thus generating a “reactive glue” at the cracked site. A capsule‐based healing system via a graphene‐based Cu2O (TRGO‐Cu2O‐filler) is used, acting as both the catalytic species for crosslinking and the required reinforcement agent within the material, in turn compensating the reduction in tensile strength exerted by the embedded capsules. Room‐temperature self‐healing within 48 h is achieved, with the investigated specimen containing TRGO‐Cu2O demonstrating significantly faster self‐healing compared to homogeneous (Cu(PPh3)3F, Cu(PPh3)3Br), and heterogeneous (Cu/C) copper(I) catalysts.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号