首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88914篇
  免费   2446篇
  国内免费   1775篇
化学   31746篇
晶体学   939篇
力学   7478篇
综合类   105篇
数学   33065篇
物理学   19802篇
  2023年   279篇
  2022年   467篇
  2021年   541篇
  2020年   500篇
  2019年   508篇
  2018年   10752篇
  2017年   10560篇
  2016年   6620篇
  2015年   1420篇
  2014年   985篇
  2013年   1140篇
  2012年   4804篇
  2011年   11442篇
  2010年   6375篇
  2009年   6716篇
  2008年   7257篇
  2007年   9320篇
  2006年   844篇
  2005年   1840篇
  2004年   1871篇
  2003年   2256篇
  2002年   1306篇
  2001年   472篇
  2000年   495篇
  1999年   359篇
  1998年   365篇
  1997年   347篇
  1996年   375篇
  1995年   277篇
  1994年   213篇
  1993年   189篇
  1992年   140篇
  1991年   141篇
  1990年   128篇
  1989年   127篇
  1988年   111篇
  1987年   86篇
  1986年   101篇
  1985年   78篇
  1984年   60篇
  1983年   51篇
  1982年   56篇
  1981年   45篇
  1980年   55篇
  1979年   46篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Fluorescent probes in the second near‐infrared window (NIR‐II) allow high‐resolution bioimaging with deep‐tissue penetration. However, existing NIR‐II materials often have poor signal‐to‐background ratios because of the lack of target specificity. Herein, an activatable NIR‐II nanoprobe for visualizing colorectal cancers was devised. This designed probe displays H2S‐activated ratiometric fluorescence and light‐up NIR‐II emission at 900–1300 nm. By using this activatable and target specific probe for deep‐tissue imaging of H2S‐rich colon cancer cells, accurate identification of colorectal tumors in animal models were performed. It is anticipated that the development of activatable NIR‐II probes will find widespread applications in biological and clinical systems.  相似文献   
992.
Covalent organic frameworks (COFs) are attractive candidates for advanced water‐treatment membranes owing to their high porosity and well‐organized channel structures. Herein, the continuous two‐dimensional imine‐linked COF‐LZU1 membrane with a thickness of only 400 nm was prepared on alumina tubes by in situ solvothermal synthesis. The membrane shows excellent water permeance (ca. 760 L m?2 h?1 MPa?1) and favorable rejection rates exceeding 90 % for water‐soluble dyes larger than 1.2 nm. The water permeance through the COF‐LZU1 membrane is much higher than that of most membranes with similar rejection rates. Long‐time operation demonstrates the outstanding stability of the COF‐LZU1 membrane. As the membrane has no selectivity for hydrated salt ions (selectivity <12 %), it is also suitable for the purification of dye products from saline solutions. The excellent performance and the outstanding water stability render the COF‐LZU1 membrane an interesting system for water purification.  相似文献   
993.
Weak ligand–receptor recognition events are often amplified by recruiting multiple regulatory biomolecules to the action site in biological systems. However, signal amplification in in vitro biomimetic systems generally lack the spatiotemporal regulation in vivo. Herein we report a framework nucleic acid (FNA)‐programmed strategy to develop valence‐controlled signal amplifiers with high modularity for ultrasensitive biosensing. We demonstrated that the FNA‐programmed signal amplifiers could recruit nucleic acids, proteins, and inorganic nanoparticles in a stoichiometric manner. The valence‐controlled signal amplifier enhanced the quantification ability of electrochemical biosensors, and enabled ultrasensitive detection of tumor‐relevant circulating free DNA (cfDNA) with sensitivity enhancement of 3–5 orders of magnitude and improved dynamic range.  相似文献   
994.
Eosin Y, a well‐known economical alternative to metal catalysts in visible‐light‐driven single‐electron transfer‐based organic transformations, can behave as an effective direct hydrogen‐atom transfer catalyst for C?H activation. Using the alkylation of C?H bonds with electron‐deficient alkenes as a model study revealed an extremely broad substrate scope, enabling easy access to a variety of important synthons. This eosin Y‐based photocatalytic hydrogen‐atom transfer strategy is promising for diverse functionalization of a wide range of native C?H bonds in a green and sustainable manner.  相似文献   
995.
Tough hydrogels, polymeric network structures with excellent mechanical properties (such as high stretchability and toughness), are emerging soft materials. Despite their remarkably mechanical features, tough hydrogels exhibit two flaws (freezing around the icing temperatures of water and drying under arid conditions). Inspired by cryoprotectants (CPAs) used in the inhibition of the icing of water in biological samples, a versatile and straightforward method is reported to fabricate extreme anti‐freezing, non‐drying CPA‐based organohydrogels with long‐term stability by partially displacing water molecules within the pre‐fabricated hydrogels. CPA‐based Ca‐alginate/polyacrylamide (PAAm) tough hydrogels were successfully fabricated with glycerol, glycol, and sorbitol. The CPA‐based organohydrogels remain unfrozen and mechanically flexible even up to ?70 °C and are stable under ambient conditions or even vacuum.  相似文献   
996.
A novel honeycomb-shaped PtSnNa/γ-Al2O3/cordierite monolithic catalyst was developed. It was found that, the unique structure of the material led to the improved catalyst performances versus the conventional granule catalyst.  相似文献   
997.
Electrolytes with high lithium-ion conductivity, better mechanical strength and large electrochemical window are essential for the realization of high-energy density lithium batteries. Polymer electrolytes are gaining interest due to their inherent flexibility and nonflammability over conventional liquid electrolytes. In this work, lithium garnet composite polymer electrolyte membrane (GCPEM) consisting of large molecular weight (Wavg ~?5?×?106) polyethylene oxide (PEO) complexed with lithium perchlorate (LiClO4) and lithium garnet oxide Li6.28Al0.24La3Zr2O12 (Al-LLZO) is prepared by solution-casting method. Significant improvement in Li+ conductivity for Al-LLZO containing GCPEM is observed compared with the Al-LLZO free polymer membrane. Maximized room temperature (30 °C) Li+ conductivity of 4.40?×?10?4 S cm?1 and wide electrochemical window (4.5 V) is observed for PEO8/LiClO4?+?20 wt% Al-LLZO (GCPEM-20) membrane. The fabricated cell with LiCoO2 as cathode, metallic lithium as anode and GCPEM-20 as electrolyte membrane delivers an initial charge/discharge capacity of 146 mAh g?1/142 mAh g?1 at 25 °C with 0.06 C-rate.  相似文献   
998.
In this work, organic-inorganic composite materials of polyaniline and manganese oxide were synthesized and investigated their electrochemical performance. This composite material was prepared by oxidizing aniline with methyl triphenylphosphonium permanganate as a novel organic oxidant via aqueous, emulsion, and interfacial polymerization pathways. This process led to the formation of polyaniline-sulfate salt (PANI-SA-Mn5O8). Formation of polyaniline-sulfate salt was confirmed from FT-IR, EDAX, and XRD results. Formation of Mn5O8 was supported by XRD spectrum. PANI-SA-Mn5O8 prepared via emulsion polymerization pathway was obtained in porous nanorod morphology with high conductivity (9.4 S cm?1) compared to that of the other sample prepared via interfacial pathway (1.7 S cm?1). Whereas, aqueous polymerization pathway resulted in sheet-like morphology with a conductivity of 0.8 S cm?1. These composites were used as pseudocapacitive electrode materials. Electrochemical characterization (cyclic voltammetry, charge-discharge, and electrochemical impedance measurement) showed that composite prepared via emulsion polymerization pathway gave better electrochemical performance, and showed good cycling behavior.  相似文献   
999.
This paper reports the voltammetric determination of 17β-estradiol in urine and buttermilk samples using a simple detector based on a carbon paste electrode (CPE) modified with copper(II) oxide (CuO). The CuO was obtained by the Pechini method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive (EDS), Fourier transform infrared (FTIR), and Raman spectroscopies. Cyclic voltammetry (CV) and square-wave voltammetry (SWV) demonstrated that the CuO-modified carbon paste electrode (CuO/CPE detector) displayed much higher electrocatalytic activity in the 17β-estradiol oxidation reaction than the CPE without modification, exhibiting a low detection limit of 21.0 nmol L?1 with a wide linear range from 60.0 to 800.0 nmol L?1 (R = 0.998). Satisfactory results were obtained for the determination of 17β-estradiol in human urine and buttermilk samples. The proposed electrochemical detector offers high repeatability, stability, fast response, low cost, and potential for practical application in the quantification of this hormone.
Graphical abstract ?
  相似文献   
1000.
A carbon paste electrode (CPE) modified with Fe3O4 nanoparticles (Fe3O4 NP) and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (IL BMI.PF6) was employed for the electroanalytical determination of estrone (E1) by square-wave voltammetry (SWV). At the modified electrode, cyclic voltammograms of E1 in B–R buffer (pH 12.0) showed an adsorption-controlled irreversible oxidation peak at around +0.365 V. The anodic current increased by a factor of five times and the peak potential shifted 65 mV to less positive values compared with the unmodified CPE. Under optimized conditions, the calibration curve obtained showed two linear ranges: from 4.0 to 9.0 μmol L?1 and from 9.0 to 100.0 μmol L?1. The limits of detection (LOD) and quantification (LOQ) attained were 0.47 and 4.0 μmol L?1, respectively. The proposed modified electrode was applied to the determination of E1 in pork meat samples. Data provided by the proposed modified electrode were compared with data obtained by UV–vis spectroscopy. The outstanding performance of the electrochemical device indicates that Fe3O4 NP and the IL BMI.PF6 are promising materials for the preparation of chemically modified electrodes for the determination of E1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号